/**
         * <p>
         * Computes the magnitude of the complex number in the input matrix and stores the results in the output
         * matrix.
         * </p>
         *
         * magnitude = sqrt(real^2 + imaginary^2)
         *
         * @param input Complex matrix. Not modified.
         * @param output real matrix. Modified.
         */
        public static void magnitude(ZMatrixD1 input, DMatrixD1 output)
        {
            output.reshape(input.numRows, input.numCols);

            int length = input.DataLength;

            for (int i = 0; i < length; i += 2)
            {
                double real      = input.data[i];
                double imaginary = input.data[i + 1];

                output.data[i / 2] = Math.Sqrt(real * real + imaginary * imaginary);
            }
        }
示例#2
0
        /**
         * An alternative implementation of {@link #multTransA_small} that performs well on large
         * matrices.  There is a relative performance hit when used on small matrices.
         *
         * @param A A matrix that is m by n. Not modified.
         * @param B A Vector that has length m. Not modified.
         * @param C A column vector that has length n. Modified.
         */
        public static void multTransA_reorder(DMatrix1Row A, DMatrixD1 B, DMatrixD1 C)
        {
            if (B.numRows == 1)
            {
                if (A.numRows != B.numCols)
                {
                    throw new MatrixDimensionException("A and B are not compatible");
                }
            }
            else if (B.numCols == 1)
            {
                if (A.numRows != B.numRows)
                {
                    throw new MatrixDimensionException("A and B are not compatible");
                }
            }
            else
            {
                throw new MatrixDimensionException("B is not a vector");
            }
            C.reshape(A.numCols, 1);

            if (A.numRows == 0)
            {
                CommonOps_DDRM.fill(C, 0);
                return;
            }

            double B_val = B.get(0);

            for (int i = 0; i < A.numCols; i++)
            {
                C.set(i, A.get(i) * B_val);
            }

            int indexA = A.numCols;

            for (int i = 1; i < A.numRows; i++)
            {
                B_val = B.get(i);
                for (int j = 0; j < A.numCols; j++)
                {
                    C.plus(j, A.get(indexA++) * B_val);
                }
            }
        }
示例#3
0
        /**
         * <p>
         * Performs a matrix vector multiply.<br>
         * <br>
         * c = A * b <br>
         * and<br>
         * c = A * b<sup>T</sup> <br>
         * <br>
         * c<sub>i</sub> = Sum{ j=1:n, a<sub>ij</sub> * b<sub>j</sub>}<br>
         * <br>
         * where A is a matrix, b is a column or transposed row vector, and c is a column vector.
         * </p>
         *
         * @param A A matrix that is m by n. Not modified.
         * @param B A vector that has length n. Not modified.
         * @param C A column vector that has length m. Modified.
         */
        public static void mult(DMatrix1Row A, DMatrixD1 B, DMatrixD1 C)
        {
            if (B.numRows == 1)
            {
                if (A.numCols != B.numCols)
                {
                    throw new MatrixDimensionException("A and B are not compatible");
                }
            }
            else if (B.numCols == 1)
            {
                if (A.numCols != B.numRows)
                {
                    throw new MatrixDimensionException("A and B are not compatible");
                }
            }
            else
            {
                throw new MatrixDimensionException("B is not a vector");
            }
            C.reshape(A.numRows, 1);

            if (A.numCols == 0)
            {
                CommonOps_DDRM.fill(C, 0);
                return;
            }

            int    indexA = 0;
            int    cIndex = 0;
            double b0     = B.get(0);

            for (int i = 0; i < A.numRows; i++)
            {
                double total = A.get(indexA++) * b0;

                for (int j = 1; j < A.numCols; j++)
                {
                    total += A.get(indexA++) * B.get(j);
                }

                C.set(cIndex++, total);
            }
        }
示例#4
0
        /**
         * <p>
         * Performs a matrix vector multiply.<br>
         * <br>
         * C = A<sup>T</sup> * B <br>
         * where B is a column vector.<br>
         * or<br>
         * C = A<sup>T</sup> * B<sup>T</sup> <br>
         * where B is a row vector. <br>
         * <br>
         * c<sub>i</sub> = Sum{ j=1:n, a<sub>ji</sub> * b<sub>j</sub>}<br>
         * <br>
         * where A is a matrix, B is a column or transposed row vector, and C is a column vector.
         * </p>
         * <p>
         * This implementation is optimal for small matrices.  There is a huge performance hit when
         * used on large matrices due to CPU cache issues.
         * </p>
         *
         * @param A A matrix that is m by n. Not modified.
         * @param B A that has length m and is a column. Not modified.
         * @param C A column vector that has length n. Modified.
         */
        public static void multTransA_small(DMatrix1Row A, DMatrixD1 B, DMatrixD1 C)
        {
            if (B.numRows == 1)
            {
                if (A.numRows != B.numCols)
                {
                    throw new MatrixDimensionException("A and B are not compatible");
                }
            }
            else if (B.numCols == 1)
            {
                if (A.numRows != B.numRows)
                {
                    throw new MatrixDimensionException("A and B are not compatible");
                }
            }
            else
            {
                throw new MatrixDimensionException("B is not a vector");
            }

            C.reshape(A.numCols, 1);

            int cIndex = 0;

            for (int i = 0; i < A.numCols; i++)
            {
                double total = 0.0;

                int indexA = i;
                for (int j = 0; j < A.numRows; j++)
                {
                    total  += A.get(indexA) * B.get(j);
                    indexA += A.numCols;
                }

                C.set(cIndex++, total);
            }
        }