示例#1
0
        public static void IlGpu(CudaAccelerator gpu, Real[] matrix, Real[] vector, int m, int n)
        {
            using (var cudaMatrix = gpu.Allocate(matrix))
                using (var cudaVector = gpu.Allocate(vector))
                {
                    var timer = Stopwatch.StartNew();

                    var gridSizeX = Util.DivUp(n, 32);
                    var gridSizeY = Util.DivUp(m, 8);
                    var lp        = ((gridSizeX, gridSizeY, 1), (32, 8));

                    gpu.Launch(IlGpuKernel, gpu.DefaultStream, lp, cudaMatrix.View, cudaVector.View, m, n);

                    gpu.Synchronize();
                    Util.PrintPerformance(timer, "AddVector.IlGpu", 3, m, n);

                    cudaMatrix.CopyTo(matrix, 0, 0, matrix.Length);
                }
        }
示例#2
0
        public static float[] RunMatrixMulShared(float[][] a, float[][] b, int N, ref Stopwatch sw)
        {
            //Create context and accelerator
            var gpu = new CudaAccelerator(new Context());

            //Create typed launcher
            var matrixMulKernelShared = gpu.LoadStreamKernel <
                ArrayView <float>,
                ArrayView <float>,
                ArrayView <float>,
                int>(MatrixMulShared);

            //Allocate memory
            var buffSize             = N * N;
            MemoryBuffer <float> d_a = gpu.Allocate <float>(buffSize);
            MemoryBuffer <float> d_b = gpu.Allocate <float>(buffSize);
            MemoryBuffer <float> d_c = gpu.Allocate <float>(buffSize);

            d_a.CopyFrom(FlatternArr(a), 0, Index1.Zero, buffSize);
            d_b.CopyFrom(FlatternArr(b), 0, Index1.Zero, buffSize);

            //Groups per grid dimension
            int GrPerDim = (int)Math.Ceiling((float)N / groupSize);

            KernelConfig dimension = (
                new Index2(GrPerDim, GrPerDim),                 // Number of groups
                new Index2(groupSize, groupSize));              // Group size (thread count in group)

            sw.Restart();

            matrixMulKernelShared(dimension, d_a.View, d_b.View, d_c.View, N);

            // Wait for the kernel to finish...
            gpu.Synchronize();

            sw.Stop();

            var c = d_c.GetAsArray();

            return(c);
        }
示例#3
0
        public static void IlGpu(
            CudaAccelerator gpu,
            Real[] mSquaredDistances,
            Real[] mCoordinates,
            int c,
            int n)
        {
            using var cudaSquaredDistance = gpu.Allocate(mSquaredDistances);
            using var cudaCoordinates     = gpu.Allocate(mCoordinates);
            var timer = Stopwatch.StartNew();

            const int blockSize = 128;

            var gridSize = Util.DivUp(n * n, blockSize);
            var lp       = (gridSize, blockSize);

            gpu.Launch(IlGpuKernel, gpu.DefaultStream, lp, cudaSquaredDistance.View, cudaCoordinates.View, c, n);
            gpu.Synchronize();

            Util.PrintPerformance(timer, "SquaredDistance.IlGpu", n, c, n);

            cudaSquaredDistance.CopyTo(mSquaredDistances, 0, 0, mSquaredDistances.Length);
        }
示例#4
0
        private static void IlGpuOptimisedImpl(
            CudaAccelerator gpu,
            Real[] mSquaredDistances,
            Real[] mCoordinates,
            int c,
            int n,
            string name,
            Action <ArrayView2D <Real>, ArrayView <Real>, SpecializedValue <int>, SpecializedValue <int>, int> kernelFunc)
        {
            using var cudaSquaredDistance = gpu.Allocate <Real>(n, n);
            using var cudaCoordinates     = gpu.Allocate(mCoordinates);
            var timer = Stopwatch.StartNew();

            const int blockSize = 128;
            var       gridSize  = Util.DivUp(n, blockSize);
            var       lp        = ((gridSize, gridSize, 1), (blockSize, 1, 1));

            gpu.Launch(kernelFunc, gpu.DefaultStream, lp, cudaSquaredDistance.View, cudaCoordinates.View, SpecializedValue.New(blockSize), SpecializedValue.New(c), n);
            gpu.Synchronize();

            Util.PrintPerformance(timer, name, n, c, n);

            cudaSquaredDistance.CopyTo(mSquaredDistances, (0, 0), 0, (n, n));
        }
示例#5
0
        private static void Performance()
        {
            using (var context = new Context())
            {
                using (var accelerator = new CudaAccelerator(context))
                {
                    using (var b = accelerator.CreateBackend())
                    {
                        using (var c = accelerator.Context.CreateCompileUnit(b))
                        {
                            var method = typeof(Program).GetMethod("MathKernel", BindingFlags.Static | BindingFlags.Public);
                            var compiled = b.Compile(c, method);

                            var kernel = accelerator.LoadAutoGroupedStreamKernel<Index2, ArrayView2D<float>>(MathKernel);
                            //var kernel = accelerator.LoadAutoGroupedKernel(compiled);

                            int size = 100000;
                            var W = new[] { 50 };
                            var H = new[] { 50 };

                            for (int n = 0; n < W.Length; n++)
                            {
                                for (int m = 0; m < H.Length; m++)
                                {
                                    int x = W[n];
                                    int y = H[m];

                                    Console.WriteLine($"\n\nW {x}, H {y} \n\n");

                                    //var watch = Stopwatch.StartNew();
                                    //for (int k = 0; k < size; k++)
                                    //{
                                    //    var v = new float[x, y];
                                    //    for (int i = 0; i < x; i++)
                                    //    {
                                    //        for (int j = 0; j < y; j++)
                                    //        {
                                    //            v[i, j] = (float)Math.Sqrt(i * j);
                                    //        }
                                    //    }
                                    //}
                                    //watch.Stop();
                                    //Console.WriteLine($"\n\nElapsed CPU Time Linear: {watch.ElapsedMilliseconds}ms\n");
                                    //GC.Collect();
                                    //
                                    //watch = Stopwatch.StartNew();
                                    //Parallel.For(0, size, k =>
                                    //{
                                    //    var v = new float[x, y];
                                    //    Parallel.For(0, x, i =>
                                    //    {
                                    //        Parallel.For(0, y, j =>
                                    //        {
                                    //            v[i, j] = (float)Math.Sqrt(i * j);
                                    //        });
                                    //    });
                                    //});
                                    //watch.Stop();
                                    //Console.WriteLine($"Elapsed CPU Time Parallel: {watch.ElapsedMilliseconds}ms\n\n");
                                    //GC.Collect();

                                    //var watch = Stopwatch.StartNew();
                                    //for (int k = 0; k < size; k++)
                                    //{
                                    //    var idx = new Index2(x, y);
                                    //    var buffer = accelerator.Allocate<float>(idx);
                                    //    kernel(idx, buffer.View);
                                    //    accelerator.Synchronize();
                                    //    buffer.Dispose();
                                    //}
                                    //watch.Stop();
                                    //Console.WriteLine($"\n\nElapsed GPU Time Linear: {watch.ElapsedMilliseconds}ms\n");
                                    //GC.Collect();

                                    var kn = Enumerable.Repeat(accelerator.LoadAutoGroupedStreamKernel<Index2, ArrayView2D<float>>(MathKernel), size).ToList();

                                    var watch = Stopwatch.StartNew();
                                    Parallel.For(0, size, k =>
                                    {
                                        var idx = new Index2(x, y);
                                        var buffer = accelerator.Allocate<float>(idx);
                                        //kn[k](idx, buffer.View);
                                        //kernel.Launch(idx, buffer.View);
                                        kernel(idx, buffer.View);
                                        accelerator.Synchronize();
                                        buffer.Dispose();
                                    });
                                    watch.Stop();
                                    Console.WriteLine($"Elapsed GPU Time Parallel: {watch.ElapsedMilliseconds}ms\n\n");
                                    GC.Collect();
                                }
                            }
                        }
                    }
                }
            }
        }
示例#6
0
        public void ProccessOld()
        {
            // Create the required ILGPU context
            using (var context = new Context())
            {
                /*
                 * using (var accelerator = new CPUAccelerator(context))
                 * {
                 *  // accelerator.LoadAutoGroupedStreamKernel creates a typed launcher
                 *  // that implicitly uses the default accelerator stream.
                 *  // In order to create a launcher that receives a custom accelerator stream
                 *  // use: accelerator.LoadAutoGroupedKernel<Index, ArrayView<int> int>(...)
                 *  var myKernel = accelerator.LoadAutoGroupedStreamKernel<Index, ArrayView<int>, int>(MyKernel2);
                 *
                 *  // Allocate some memory
                 *  using (var buffer = accelerator.Allocate<int>(1024))
                 *  {
                 *      // Launch buffer.Length many threads and pass a view to buffer
                 *      myKernel(buffer.Length, buffer.View, 42);
                 *
                 *      // Wait for the kernel to finish...
                 *      accelerator.Synchronize();
                 *
                 *      // Resolve data
                 *      var data = buffer.GetAsArray();
                 *      // ...
                 *  }
                 * }*/

                using (var accelerator = new CudaAccelerator(context)) // test with CPUAccelerator
                {
                    var methodInfo = typeof(Impl_ILGPU).GetMethod(nameof(MyKernel), BindingFlags.Public | BindingFlags.Static);
                    var myKernel   = accelerator.LoadAutoGroupedStreamKernel <Index,
                                                                              ArrayView <byte>,
                                                                              ArrayView <double>,
                                                                              ArrayView <int>,
                                                                              ArrayView <int>,
                                                                              ArrayView <double>,
                                                                              ArrayView <byte>,
                                                                              int
                                                                              >(MyKernel);

                    /*
                     * var myKernel = accelerator.LoadAutoGroupedStreamKernel<Action<Index,
                     *      ArrayView<byte>,
                     *      ArrayView<int>,
                     *      ArrayView<int>,
                     *      ArrayView<double>,
                     *      ArrayView2D<byte>>>(methodInfo);*/

                    // Allocate some memory
                    var input1_dev = accelerator.Allocate <int>(DataGenerator.In1.Length);
                    var input2_dev = accelerator.Allocate <int>(DataGenerator.In2.Length);
                    var input3_dev = accelerator.Allocate <double>(DataGenerator.In3.Length);
                    //var input4_dev = accelerator.Allocate<byte>(DataGenerator.In4_2.GetLength(0), DataGenerator.In4_2.GetLength(1));
                    var input4_dev = accelerator.Allocate <byte>(DataGenerator.In4_3_bytes.Length);

                    // init output parameters
                    var result_dev     = accelerator.Allocate <byte>(resultsBytes.Length);
                    var resultCalc_dev = accelerator.Allocate <double>(calculatables.Length);

                    input1_dev.CopyFrom(DataGenerator.In1, 0, 0, DataGenerator.In1.Length);
                    input2_dev.CopyFrom(DataGenerator.In2, 0, 0, DataGenerator.In2.Length);
                    input3_dev.CopyFrom(DataGenerator.In3, 0, 0, DataGenerator.In3.Length);
                    //input4_dev.CopyFrom(DataFeeder.In4_2_bytes, new Index2(), new Index2(DataFeeder.In4_2_bytes.GetLength(0), 0), new Index2(1, 2));
                    //input4_dev.CopyFrom(DataGenerator.In4_2_bytes, Index2.Zero, Index2.Zero, input4_dev.Extent);
                    input4_dev.CopyFrom(DataGenerator.In4_3_bytes, 0, 0, DataGenerator.In4_3_bytes.Length);

                    myKernel(input1_dev.Length, result_dev.View, resultCalc_dev.View, input1_dev.View, input2_dev.View, input3_dev.View, input4_dev.View, DataGenerator.Width);

                    // Wait for the kernel to finish...
                    accelerator.Synchronize();

                    // Resolve data
                    resultsBytes  = result_dev.GetAsArray();
                    calculatables = resultCalc_dev.GetAsArray();

                    //d_in1.Dispose();
                    //d_in1 = null;

                    /*
                     * var kernelWithDefaultStream = accelerator.LoadAutoGroupedStreamKernel<
                     *  Index,
                     *  ArrayView<bool>,
                     *  ArrayView<int>,
                     *  ArrayView<int>,
                     *  ArrayView<double>,
                     *  ArrayView2D<bool>
                     *  >(MyKernel);
                     *
                     * kernelWithDefaultStream(buffer.Extent, buffer.View, 1);
                     */

                    // Launch buffer.Length many threads and pass a view to buffer
                    //myKernel(d_in1.Length, d_in1.View, 42);

                    // Wait for the kernel to finish...
                    //accelerator.Synchronize();

                    // Resolve data
                    //var data = buffer.GetAsArray();
                    // ...
                }
            }
        }