public void ApplyCrossValidation(int folds, double[][] inputs, int[] outputs)
        {
            crossValidation = CrossValidation.Create(

                k: 10,                                     // We will be using 10-fold cross validation

                learner: (p) => new B.NaiveBayesLearning() // here we create the learning algorithm
            {
            },

                // Now we have to specify how the tree performance should be measured:
                loss: (actual, expected, p) => new ZeroOneLoss(expected).Loss(actual),

                // This function can be used to perform any special
                // operations before the actual learning is done, but
                // here we will just leave it as simple as it can be:
                fit: (teacher, x, y, w) => teacher.Learn(x, y, w),

                // Finally, we have to pass the input and output data
                // that will be used in cross-validation.
                x: inputs.Select(v => v.Select(u => Convert.ToInt32(u)).ToArray()).ToArray(), y: outputs
                );
            var result = crossValidation.Learn(inputs.Select(u => u.Select(v => Convert.ToInt32(v)).ToArray()).ToArray(), outputs);

            ConfusionMatrix = result.ToConfusionMatrix(inputs.Select(v => v.Select(u => Convert.ToInt32(u)).ToArray()).ToArray(), outputs).Matrix;
        }
示例#2
0
        public static void SVM_crossValidation_AnomalyClassifier(double[][] inputs, int[] outputs)
        {
            Accord.Math.Random.Generator.Seed = 0;
            var crossvalidation = new CrossValidation <SupportVectorMachine <Gaussian, double[]>, double[]>()
            {
                K = 10, // Use 3 folds in cross-validation

                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 10,
                //    Kernel = new Gaussian(3)

                //},
                Learner = (s) => new SequentialMinimalOptimization <Gaussian, double[]>()
                {
                    Complexity = 10,
                    Kernel     = new Gaussian(2.6)
                },

                // Indicate how the performance of those models will be measured
                Loss = (expected, actual, p) => new ZeroOneLoss(expected).Loss(actual),

                Stratify = true, //   force balancing of classes
            };

            // If needed, control the parallelization degree
            crossvalidation.ParallelOptions.MaxDegreeOfParallelism = 1;

            // Compute the cross-validation
            var result = crossvalidation.Learn(inputs, outputs);


            // Finally, access the measured performance.
            double trainingErrors   = result.Training.Mean;
            double validationErrors = result.Validation.Mean;

            // If desired, compute an aggregate confusion matrix for the validation sets:
            GeneralConfusionMatrix gcm = result.ToConfusionMatrix(inputs, outputs);
            double accuracy            = gcm.Accuracy;
            double error = gcm.Error;


            Console.WriteLine("Accuracy:" + gcm.Accuracy);
            Console.WriteLine("Error:" + gcm.Error);

            Console.WriteLine("First Anomaly type Precision:" + gcm.Precision[0]);
            Console.WriteLine("First Anomaly type  Recall:" + gcm.Recall[0]);
            Console.WriteLine("Second Anomaly type  Precision:" + gcm.Precision[1]);
            Console.WriteLine("Second Anomaly type  Recall:" + gcm.Recall[1]);

            //double anomalyFScore = 2 * (gcm.Precision[1] * gcm.Recall[1]) / (gcm.Precision[1] + gcm.Recall[1]);
            //double NotAnomalyFScore = 2 * (gcm.Precision[0] * gcm.Recall[0]) / (gcm.Precision[0] + gcm.Recall[0]);
            //Console.WriteLine("Not ANomaly F-score:" + NotAnomalyFScore);
            //Console.WriteLine("Anomaly F-score:" + anomalyFScore);

            Console.WriteLine("First Anomaly type F-score:" + gcm.PerClassMatrices[0].FScore);
            Console.WriteLine("Second Anomaly type  F-score:" + gcm.PerClassMatrices[1].FScore);


            //var splitset = new SplitSetValidation<MulticlassSupportVectorMachine<Gaussian, double[]>, double[]>()
            //{

            //    Learner = (s) => new MulticlassSupportVectorLearning<Gaussian, double[]>()
            //    {

            //        Learner = (m) => new SequentialMinimalOptimization<Gaussian, double[]>()
            //        {
            //            Complexity = 10,
            //            Kernel = new Gaussian(2.92)
            //        }
            //    }
            //    ,Stratify =true
            //};

            //var result = splitset.Learn(inputs, outputs);

            //double trainingErrors = result.Training.Value;
            //double validationErrors = result.Validation.Value;
        }
示例#3
0
        //    public static void NaiveBaise(double[][] chain)
        //    {

        //        DataTable data = new DataTable("dataa");
        //        data.Rows.Add()
        //        data.Columns.AddRange( "speedAvg1", "speedAvg2", "speedAvg3", "speedAvg4", "speedAvg5", "speedAvg6", "ContainAnomaly");

        //        Codification codebook = new Codification(data,
        //"speedAvg1", "speedAvg2", "speedAvg3", "speedAvg4", "speedAvg5", "speedAvg6", "ContainAnomaly");

        //        // Extract input and output pairs to train
        //        DataTable symbols = codebook.Apply(data);
        //        int[][] inputs = symbols.ToArray<int>("Outlook", "Temperature", "Humidity", "Wind");
        //        int[] outputs = symbols.ToArray<int>("PlayTennis");

        //    }
        public static void SVM_crossValidation_AnomalyDetection(double[][] inputs, int[] outputs)
        {
            Accord.Math.Random.Generator.Seed = 0;
            var crossvalidation = new CrossValidation <SupportVectorMachine <Gaussian, double[]>, double[]>()
            {
                K = 100, // Use 3 folds in cross-validation

                // Indicate how learning algorithms for the models should be created



                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 10,
                //    Kernel = new Gaussian(0.5)

                //},

                //if ssegments beside hyper removed
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 100,
                //    Kernel = new Gaussian(1)

                //},

                //with max and min speed variance
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 100,
                //    Kernel = new Gaussian(1.55)

                //},

                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 15,
                //    Kernel = new Gaussian(1.55)

                //},
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 7,
                //    Kernel = new Gaussian(1.9)

                //},

                //best results for 7 segments witrh fields :sc.MaxSpeed.Value, sc.MinSpeed.Value, sc.SpeedRange.Value, sc.TotalTime.Value,sc.MinTime.Value,sc.MaxTime.Value, sc.TimeRange.Value,sc.MaxSpeedVar.Value,sc.MinSpeedVar.Value, sc.SpeedVarRange.Value
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 7,
                //    Kernel = new Gaussian(2.4)

                //},
                //Best of the best
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 7,
                //    Kernel = new Gaussian(2.4)

                //},

                //for Roadscanner DB
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 10,
                //    Kernel = new Gaussian(2.92)

                //},

                //for Roadscanner3 DB
                //without pothole
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 10,
                //    Kernel = new Gaussian(2.1)

                //},

                //for Roadscanner3 DB
                //with pothole
                //Learner = (s) => new SequentialMinimalOptimization<Gaussian, double[]>()
                //{
                //    Complexity = 15,
                //    Kernel = new Gaussian(2.5)

                //},

                //RoadScanner3 Db
                //with pothole
                //
                Learner = (s) => new SequentialMinimalOptimization <Gaussian, double[]>()
                {
                    Complexity = 15,
                    Kernel     = new Gaussian(3)
                },

                // Indicate how the performance of those models will be measured
                Loss = (expected, actual, p) => new ZeroOneLoss(expected).Loss(actual),

                Stratify = true, //   force balancing of classes
            };

            // If needed, control the parallelization degree
            crossvalidation.ParallelOptions.MaxDegreeOfParallelism = 1;

            // Compute the cross-validation
            var result = crossvalidation.Learn(inputs, outputs);


            // Finally, access the measured performance.
            double trainingErrors   = result.Training.Mean;
            double validationErrors = result.Validation.Mean;

            // If desired, compute an aggregate confusion matrix for the validation sets:
            GeneralConfusionMatrix gcm = result.ToConfusionMatrix(inputs, outputs);
            double accuracy            = gcm.Accuracy;
            double error = gcm.Error;


            Console.WriteLine("Accuracy:" + gcm.Accuracy);
            Console.WriteLine("Error:" + gcm.Error);

            Console.WriteLine("Not Anomaly Precision:" + gcm.Precision[0]);
            Console.WriteLine("Not Anomaly Recall:" + gcm.Recall[0]);
            Console.WriteLine("Anomaly Precision:" + gcm.Precision[1]);
            Console.WriteLine("Anomaly Recall:" + gcm.Recall[1]);

            //double anomalyFScore = 2 * (gcm.Precision[1] * gcm.Recall[1]) / (gcm.Precision[1] + gcm.Recall[1]);
            //double NotAnomalyFScore = 2 * (gcm.Precision[0] * gcm.Recall[0]) / (gcm.Precision[0] + gcm.Recall[0]);
            //Console.WriteLine("Not ANomaly F-score:" + NotAnomalyFScore);
            //Console.WriteLine("Anomaly F-score:" + anomalyFScore);

            Console.WriteLine("Not ANomaly F-score:" + gcm.PerClassMatrices[0].FScore);
            Console.WriteLine("Anomaly F-score:" + gcm.PerClassMatrices[1].FScore);
        }
示例#4
0
        public void learn_hmm()
        {
            #region doc_learn_hmm
            // Ensure results are reproducible
            Accord.Math.Random.Generator.Seed = 0;

            // This is a sample code on how to use Cross-Validation
            // to assess the performance of Hidden Markov Models.

            // Declare some testing data
            int[][] inputs = new int[][]
            {
                new int[] { 0, 1, 1, 0 },    // Class 0
                new int[] { 0, 0, 1, 0 },    // Class 0
                new int[] { 0, 1, 1, 1, 0 }, // Class 0
                new int[] { 0, 1, 1, 1, 0 }, // Class 0
                new int[] { 0, 1, 1, 0 },    // Class 0

                new int[] { 0, 0, 0, 0, 0 }, // Class 1
                new int[] { 0, 0, 0, 1, 0 }, // Class 1
                new int[] { 0, 0, 0, 0, 0 }, // Class 1
                new int[] { 0, 0, 0 },       // Class 1
                new int[] { 0, 0, 0, 0 },    // Class 1

                new int[] { 1, 0, 0, 1 },    // Class 2
                new int[] { 1, 1, 0, 1 },    // Class 2
                new int[] { 1, 0, 0, 0, 1 }, // Class 2
                new int[] { 1, 0, 1 },       // Class 2
                new int[] { 1, 1, 0, 1 },    // Class 2
            };

            int[] outputs = new int[]
            {
                0, 0, 0, 0, 0, // First  5 sequences are of class 0
                1, 1, 1, 1, 1, // Middle 5 sequences are of class 1
                2, 2, 2, 2, 2, // Last   5 sequences are of class 2
            };

            // Create a new Cross-validation algorithm passing the data set size and the number of folds
            var crossvalidation = new CrossValidation <HiddenMarkovClassifier, int[]>()
            {
                K       = 3, // Use 3 folds in cross-validation
                Learner = (s) => new HiddenMarkovClassifierLearning()
                {
                    Learner = (p) => new BaumWelchLearning()
                    {
                        NumberOfStates = 3
                    }
                },

                Loss = (expected, actual, p) =>
                {
                    var cm = new GeneralConfusionMatrix(classes: p.Model.NumberOfClasses, expected: expected, predicted: actual);
                    p.Variance = cm.Variance;
                    return(p.Value = cm.Kappa);
                },

                Stratify = false,
            };

            // If needed, control the parallelization degree
            crossvalidation.ParallelOptions.MaxDegreeOfParallelism = 1;

            // Compute the cross-validation
            var result = crossvalidation.Learn(inputs, outputs);

            // Finally, access the measured performance.
            double trainingErrors   = result.Training.Mean;
            double validationErrors = result.Validation.Mean;

            double trainingErrorVar   = result.Training.Variance;
            double validationErrorVar = result.Validation.Variance;

            double trainingErrorPooledVar   = result.Training.PooledVariance;
            double validationErrorPooledVar = result.Validation.PooledVariance;
            #endregion

            Assert.AreEqual(5, result.AverageNumberOfSamples);
            Assert.AreEqual(15, result.NumberOfSamples);

            Assert.AreEqual(0, result.NumberOfInputs);
            Assert.AreEqual(3, result.NumberOfOutputs);
            Assert.AreEqual(3, result.Models.Length);

            for (int i = 0; i < 3; i++)
            {
                Assert.AreEqual(0, result.Models[i].NumberOfInputs);
                Assert.AreEqual(3, result.Models[i].NumberOfOutputs);
                Assert.AreEqual(3, result.Models[i].Model.NumberOfClasses);
                Assert.AreEqual(0, result.Models[i].Model.NumberOfInputs);
                Assert.AreEqual(3, result.Models[i].Model.NumberOfOutputs);

                Assert.AreEqual(10, result.Models[i].Training.NumberOfSamples);
                Assert.AreEqual(5, result.Models[i].Validation.NumberOfSamples);
            }

            Assert.AreEqual(3, crossvalidation.K);
            Assert.AreEqual(1.0, result.Training.Mean, 1e-10);
            Assert.AreEqual(0.78472222222222232, result.Validation.Mean, 1e-10);

            Assert.AreEqual(0, result.Training.Variance, 1e-10);
            Assert.AreEqual(0.034866898148148126, result.Validation.Variance, 1e-10);

            Assert.AreEqual(0, result.Training.StandardDeviation, 1e-10);
            Assert.AreEqual(0.18672680082984372, result.Validation.StandardDeviation, 1e-10);

            Assert.AreEqual(0, result.Training.PooledVariance);
            Assert.AreEqual(0.045256528501157391, result.Validation.PooledVariance);

            Assert.AreEqual(0, result.Training.PooledStandardDeviation);
            Assert.AreEqual(0.21273581856649668, result.Validation.PooledStandardDeviation);

            Assert.AreEqual(3, crossvalidation.Folds.Length);
            Assert.AreEqual(3, result.Models.Length);
        }
示例#5
0
        public void learn_test()
        {
            #region doc_learn
            // Ensure results are reproducible
            Accord.Math.Random.Generator.Seed = 0;

            // This is a sample code on how to use Cross-Validation
            // to assess the performance of Support Vector Machines.

            // Consider the example binary data. We will be trying
            // to learn a XOR problem and see how well does SVMs
            // perform on this data.

            double[][] data =
            {
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
            };

            int[] xor = // result of xor for the sample input data
            {
                -1,  1,
                1,  -1,
                -1,  1,
                1,  -1,
                -1,  1,
                1,  -1,
                -1,  1,
                1,  -1,
            };


            // Create a new Cross-validation algorithm passing the data set size and the number of folds
            var crossvalidation = new CrossValidation <SupportVectorMachine <Linear, double[]>, double[]>()
            {
                K = 3, // Use 3 folds in cross-validation

                // Indicate how learning algorithms for the models should be created
                Learner = (s) => new SequentialMinimalOptimization <Linear, double[]>()
                {
                    Complexity = 100
                },

                // Indicate how the performance of those models will be measured
                Loss = (expected, actual, p) => new ZeroOneLoss(expected).Loss(actual),

                Stratify = false, // do not force balancing of classes
            };

            // If needed, control the parallelization degree
            crossvalidation.ParallelOptions.MaxDegreeOfParallelism = 1;

            // Compute the cross-validation
            var result = crossvalidation.Learn(data, xor);

            // Finally, access the measured performance.
            double trainingErrors   = result.Training.Mean;
            double validationErrors = result.Validation.Mean;
            #endregion

            Assert.AreEqual(3, crossvalidation.K);
            Assert.AreEqual(0.37575757575757579, result.Training.Mean, 1e-10);
            Assert.AreEqual(0.75555555555555554, result.Validation.Mean, 1e-10);

            Assert.AreEqual(0.00044077134986225924, result.Training.Variance, 1e-10);
            Assert.AreEqual(0.0059259259259259334, result.Validation.Variance, 1e-10);

            Assert.AreEqual(0.020994555243259126, result.Training.StandardDeviation, 1e-10);
            Assert.AreEqual(0.076980035891950155, result.Validation.StandardDeviation, 1e-10);

            Assert.AreEqual(0, result.Training.PooledStandardDeviation);
            Assert.AreEqual(0, result.Validation.PooledStandardDeviation);

            Assert.AreEqual(3, crossvalidation.Folds.Length);
            Assert.AreEqual(3, result.Models.Length);
        }
        public void learn_test()
        {
            #region doc_learn
            // Ensure results are reproducible
            Accord.Math.Random.Generator.Seed = 0;

            // This is a sample code on how to use Cross-Validation
            // to assess the performance of Support Vector Machines.

            // Consider the example binary data. We will be trying
            // to learn a XOR problem and see how well does SVMs
            // perform on this data.

            double[][] data =
            {
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
                new double[] { -1, -1 }, new double[] { 1, -1 },
                new double[] { -1,  1 }, new double[] { 1,  1 },
            };

            int[] xor = // result of xor for the sample input data
            {
                -1,  1,
                1,  -1,
                -1,  1,
                1,  -1,
                -1,  1,
                1,  -1,
                -1,  1,
                1,  -1,
            };


            // Create a new Cross-validation algorithm passing the data set size and the number of folds
            var crossvalidation = new CrossValidation <SupportVectorMachine <Linear, double[]>, double[]>()
            {
                K = 3, // Use 3 folds in cross-validation

                // Indicate how learning algorithms for the models should be created
                Learner = (s) => new SequentialMinimalOptimization <Linear, double[]>()
                {
                    Complexity = 100
                },

                // Indicate how the performance of those models will be measured
                Loss = (expected, actual, p) => new ZeroOneLoss(expected).Loss(actual),

                Stratify = false, // do not force balancing of classes
            };

            // If needed, control the parallelization degree
            crossvalidation.ParallelOptions.MaxDegreeOfParallelism = 1;

            // Compute the cross-validation
            var result = crossvalidation.Learn(data, xor);

            // Finally, access the measured performance.
            double trainingErrors   = result.Training.Mean;   // should be 0.30606060606060609 (+/- var. 0.083498622589531682)
            double validationErrors = result.Validation.Mean; // should be 0.3666666666666667 (+/- var. 0.023333333333333334)

            // If desired, compute an aggregate confusion matrix for the validation sets:
            GeneralConfusionMatrix gcm = result.ToConfusionMatrix(data, xor);
            double accuracy            = gcm.Accuracy; // should be 0.625
            double error = gcm.Error;                  // should be 0.375
            #endregion

            Assert.AreEqual(16, gcm.Samples);
            Assert.AreEqual(0.625, accuracy);
            Assert.AreEqual(0.375, error);
            Assert.AreEqual(2, gcm.Classes);

            Assert.AreEqual(3, crossvalidation.K);
            Assert.AreEqual(0.30606060606060609, result.Training.Mean, 1e-10);
            Assert.AreEqual(0.3666666666666667, result.Validation.Mean, 1e-10);

            Assert.AreEqual(0.083498622589531682, result.Training.Variance, 1e-10);
            Assert.AreEqual(0.023333333333333334, result.Validation.Variance, 1e-10);

            Assert.AreEqual(0.28896128216342704, result.Training.StandardDeviation, 1e-10);
            Assert.AreEqual(0.15275252316519467, result.Validation.StandardDeviation, 1e-10);

            Assert.AreEqual(0, result.Training.PooledStandardDeviation);
            Assert.AreEqual(0, result.Validation.PooledStandardDeviation);

            Assert.AreEqual(3, crossvalidation.Folds.Length);
            Assert.AreEqual(3, result.Models.Length);
        }