public static Tensor conv2d(Tensor inputs, int filters, int[] kernel_size, int[] strides = null, string padding = "valid", string data_format = "channels_last", int[] dilation_rate = null, bool use_bias = true, IActivation activation = null, IInitializer kernel_initializer = null) { if (strides == null) { strides = new int[] { 1, 1 } } ; if (dilation_rate == null) { dilation_rate = new int[] { 1, 1 } } ; var layer = new Conv2D(filters, kernel_size); return(layer.apply(inputs)); } } }
public static Tensor conv2d(Tensor inputs, int filters, int[] kernel_size, int[] strides = null, string padding = "valid", string data_format = "channels_last", int[] dilation_rate = null, bool use_bias = true, IActivation activation = null, IInitializer kernel_initializer = null, IInitializer bias_initializer = null, bool trainable = true, string name = null) { if (strides == null) { strides = new int[] { 1, 1 } } ; if (dilation_rate == null) { dilation_rate = new int[] { 1, 1 } } ; if (bias_initializer == null) { bias_initializer = tf.zeros_initializer; } var layer = new Conv2D(filters, kernel_size: kernel_size, strides: strides, padding: padding, data_format: data_format, dilation_rate: dilation_rate, activation: activation, use_bias: use_bias, kernel_initializer: kernel_initializer, bias_initializer: bias_initializer, trainable: trainable, name: name); return(layer.apply(inputs)); } } }