示例#1
0
        public string vectorSum()
        {
            string vecSum = @"
                __kernel void vectorSum(__global float *v1, __global float *v2, __global float *v3) {
                    int i = get_global_id(0);
                    v3[i] = v1[i] + v2[i];
                }
            ";
            int    size   = 100000;

            float[] v1_ = new float[size];
            float[] v2_ = new float[size];
            float[] v3_ = new float[size];
            for (var i = 0; i < size; i++)
            {
                v1_[i] = (float)i;
                v2_[i] = (float).5f;
            }
            var platform_ = ComputePlatform.Platforms[0];
            ComputeContextPropertyList properties = new ComputeContextPropertyList(platform_);
            ComputeContext             ctx        = new ComputeContext(ComputeDeviceTypes.Gpu, properties, null, IntPtr.Zero);
            ComputeCommandQueue        commands   = new ComputeCommandQueue(ctx, ctx.Devices[0], ComputeCommandQueueFlags.None);
            ComputeProgram             program    = new ComputeProgram(ctx, vecSum);

            try
            {
                program.Build(null, null, null, IntPtr.Zero);
                Console.WriteLine("program build completed");
            }
            catch
            {
                string log = program.GetBuildLog(ctx.Devices[0]);
            }
            ComputeBuffer <float> v1, v2, v3;

            v1 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, v1_);
            v2 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, v2_);
            v3 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.WriteOnly | ComputeMemoryFlags.CopyHostPointer, v3_);
            long[] worker = { size };
            commands.WriteToBuffer(v1_, v1, false, null);
            commands.WriteToBuffer(v2_, v2, false, null);
            ComputeKernel sumKernal = program.CreateKernel("vectorSum");

            Console.WriteLine("kernal created");
            sumKernal.SetMemoryArgument(0, v1);
            sumKernal.SetMemoryArgument(1, v2);
            sumKernal.SetMemoryArgument(2, v3);
            commands.Execute(sumKernal, null, worker, null, null);
            Console.WriteLine("Executed");
            commands.ReadFromBuffer <float>(v3, ref v3_, false, null);
            StringBuilder sb = new StringBuilder();

            for (int i = 0; i < size; i++)
            {
                sb.AppendFormat("{0} + {1} = {2}<br>", v1_[i].ToString(), v2_[i].ToString(), v3_[i].ToString());
            }
            var sum_expression_result = sb.ToString();

            return(sum_expression_result);
        }
示例#2
0
        public static void RunKernels(int nofKernels)
        {
            try
            {
                // Create the event wait list. An event list is not really needed for this example but it is important to see how it works.
                // Note that events (like everything else) consume OpenCL resources and creating a lot of them may slow down execution.
                // For this reason their use should be avoided if possible.
                ComputeEventList eventList = new ComputeEventList();

                commandQueue1.WriteToBuffer(input, CB_input, false, eventList);
                commandQueue1.WriteToBuffer(weightIDs, CB_networkIndex, false, eventList);

                // Execute the kernel "count" times. After this call returns, "eventList" will contain an event associated with this command.
                // If eventList == null or typeof(eventList) == ReadOnlyCollection<ComputeEventBase>, a new event will not be created.

                commandQueue1.Execute(kernel, null, new long[] { nofKernels }, null, eventList);

                // Read back the results. If the command-queue has out-of-order execution enabled (default is off), ReadFromBuffer
                // will not execute until any previous events in eventList (in our case only eventList[0]) are marked as complete
                // by OpenCL. By default the command-queue will execute the commands in the same order as they are issued from the host.
                // eventList will contain two events after this method returns.
                commandQueue1.ReadFromBuffer(CB_output, ref output, false, eventList); // , eventList

                // A blocking "ReadFromBuffer" (if 3rd argument is true) will wait for itself and any previous commands
                // in the command queue or eventList to finish execution. Otherwise an explicit wait for all the opencl commands
                // to finish has to be issued before "arrC" can be used.
                // This explicit synchronization can be achieved in two ways:

                // 1) Wait for the events in the list to finish,
                eventList.Wait();

                // 2) Or simply use
                commandQueue1.Finish();
            }
            catch (Exception e)
            {
                Console.WriteLine(e.ToString());
            }
        }
示例#3
0
        private static void ConductSearch(ComputeContext context, ComputeKernel kernel)
        {
            var todos = GetQueenTaskPartition(NumQueens, 4);
            var done  = new List <QueenTask>();

            ComputeEventList eventList = new ComputeEventList();

            var commands = new ComputeCommandQueue(context, context.Devices[1], ComputeCommandQueueFlags.None);

            Console.WriteLine("Starting {0} tasks, and working {1} at a time.", todos.Count, Spread);

            QueenTask[] inProgress = GetNextAssignment(new QueenTask[] {}, todos, done);

            var sw = new Stopwatch();

            sw.Start();

            while (inProgress.Any())
            {
                var taskBuffer =
                    new ComputeBuffer <QueenTask>(context,
                                                  ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer,
                                                  inProgress);

                kernel.SetMemoryArgument(0, taskBuffer);
                commands.WriteToBuffer(inProgress, taskBuffer, false, null);

                for (int i = 0; i < 12; i++)
                {
                    commands.Execute(kernel, null, new long[] { inProgress.Length }, null, eventList);
                }

                commands.ReadFromBuffer(taskBuffer, ref inProgress, false, eventList);
                commands.Finish();

                inProgress = GetNextAssignment(inProgress, todos, done);
            }

            sw.Stop();

            Console.WriteLine(sw.ElapsedMilliseconds / 1000.0);

            ulong sum = done.Select(state => state.solutions)
                        .Aggregate((total, next) => total + next);

            Console.WriteLine("Q({0})={1}", NumQueens, sum);
        }
示例#4
0
        private static void ConductSearch(ComputeContext context, ComputeKernel kernel)
        {
            var todos = GetQueenTaskPartition(NumQueens, 4);
            var done = new List<QueenTask>();

            ComputeEventList eventList = new ComputeEventList();

            var commands = new ComputeCommandQueue(context, context.Devices[1], ComputeCommandQueueFlags.None);

            Console.WriteLine("Starting {0} tasks, and working {1} at a time.", todos.Count, Spread);

            QueenTask[] inProgress = GetNextAssignment(new QueenTask[] {}, todos, done);

            var sw = new Stopwatch();
            sw.Start();

            while (inProgress.Any())
            {
                var taskBuffer =
                    new ComputeBuffer<QueenTask>(context,
                        ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer,
                        inProgress);

                kernel.SetMemoryArgument(0, taskBuffer);
                commands.WriteToBuffer(inProgress, taskBuffer, false, null);

                for (int i = 0; i < 12; i++)
                    commands.Execute(kernel, null, new long[] { inProgress.Length }, null, eventList);

                commands.ReadFromBuffer(taskBuffer, ref inProgress, false, eventList);
                commands.Finish();

                inProgress = GetNextAssignment(inProgress, todos, done);
            }

            sw.Stop();

            Console.WriteLine(sw.ElapsedMilliseconds / 1000.0);

            ulong sum = done.Select(state => state.solutions)
                            .Aggregate((total, next) => total + next);

            Console.WriteLine("Q({0})={1}", NumQueens, sum);
        }
        public TerrainGen()
        {
            #if CPU_DEBUG
            var platform = ComputePlatform.Platforms[1];
            #else
            var platform = ComputePlatform.Platforms[0];
            #endif
            _devices = new List<ComputeDevice>();
            _devices.Add(platform.Devices[0]);
            _properties = new ComputeContextPropertyList(platform);
            _context = new ComputeContext(_devices, _properties, null, IntPtr.Zero);
            _cmdQueue = new ComputeCommandQueue(_context, _devices[0], ComputeCommandQueueFlags.None);

            #region setup generator kernel
            bool loadFromSource = Gbl.HasRawHashChanged[Gbl.RawDir.Scripts];
            loadFromSource = true;
            _chunkWidthInBlocks = Gbl.LoadContent<int>("TGen_ChunkWidthInBlocks");
            _chunkWidthInVerts = _chunkWidthInBlocks + 1;
            _blockWidth = Gbl.LoadContent<int>("TGen_BlockWidthInMeters");
            float lacunarity = Gbl.LoadContent<float>("TGen_Lacunarity");
            float gain = Gbl.LoadContent<float>("TGen_Gain");
            int octaves = Gbl.LoadContent<int>("TGen_Octaves");
            float offset = Gbl.LoadContent<float>("TGen_Offset");
            float hScale = Gbl.LoadContent<float>("TGen_HScale");
            float vScale = Gbl.LoadContent<float>("TGen_VScale");

            _genConstants = new ComputeBuffer<float>(_context, ComputeMemoryFlags.ReadOnly, 8);
            var genArr = new[]{
                lacunarity,
                gain,
                offset,
                octaves,
                hScale,
                vScale,
                _blockWidth,
                _chunkWidthInBlocks
            };

            _cmdQueue.WriteToBuffer(genArr, _genConstants, false, null);
            if (loadFromSource){
                _generationPrgm = new ComputeProgram(_context, Gbl.LoadScript("TGen_Generator"));
            #if CPU_DEBUG
                _generationPrgm.Build(null, @"-g -s D:\Projects\Gondola\Scripts\GenTerrain.cl", null, IntPtr.Zero); //use option -I + scriptDir for header search
            #else
                _generationPrgm.Build(null, "", null, IntPtr.Zero);//use option -I + scriptDir for header search
            #endif
                Gbl.SaveBinary(_generationPrgm.Binaries, "TGen_Generator");
            }
            else{
                var binary = Gbl.LoadBinary("TGen_Generator");
                _generationPrgm = new ComputeProgram(_context, binary, _devices);
                _generationPrgm.Build(null, "", null, IntPtr.Zero);
            }
            //loadFromSource = false;

            _terrainGenKernel = _generationPrgm.CreateKernel("GenTerrain");
            _normalGenKernel = _generationPrgm.CreateKernel("GenNormals");

            //despite the script using float3 for these fields, we need to consider it to be float4 because the
            //implementation is basically a float4 wrapper that uses zero for the last variable
            _geometry = new ComputeBuffer<float>(_context, ComputeMemoryFlags.None, _chunkWidthInVerts*_chunkWidthInVerts*4);
            _normals = new ComputeBuffer<ushort>(_context, ComputeMemoryFlags.None, _chunkWidthInVerts * _chunkWidthInVerts * 4);
            _binormals = new ComputeBuffer<byte>(_context, ComputeMemoryFlags.None, _chunkWidthInVerts*_chunkWidthInVerts*4);
            _tangents = new ComputeBuffer<byte>(_context, ComputeMemoryFlags.None, _chunkWidthInVerts*_chunkWidthInVerts*4);
            _uvCoords = new ComputeBuffer<float>(_context, ComputeMemoryFlags.None, _chunkWidthInVerts*_chunkWidthInVerts*2);

            _terrainGenKernel.SetMemoryArgument(0, _genConstants);
            _terrainGenKernel.SetMemoryArgument(3, _geometry);
            _terrainGenKernel.SetMemoryArgument(4, _uvCoords);

            _normalGenKernel.SetMemoryArgument(0, _genConstants);
            _normalGenKernel.SetMemoryArgument(3, _geometry);
            _normalGenKernel.SetMemoryArgument(4, _normals);
            _normalGenKernel.SetMemoryArgument(5, _binormals);
            _normalGenKernel.SetMemoryArgument(6, _tangents);

            #endregion

            #region setup quadtree kernel

            if (loadFromSource){
                _qTreePrgm = new ComputeProgram(_context, Gbl.LoadScript("TGen_QTree"));
            #if CPU_DEBUG
                _qTreePrgm.Build(null, @"-g -s D:\Projects\Gondola\Scripts\Quadtree.cl", null, IntPtr.Zero);
            #else
                _qTreePrgm.Build(null, "", null, IntPtr.Zero);
            #endif
                Gbl.SaveBinary(_qTreePrgm.Binaries, "TGen_QTree");
            }
            else{
                var binary = Gbl.LoadBinary("TGen_QTree");
                _qTreePrgm = new ComputeProgram(_context, binary, _devices);
                _qTreePrgm.Build(null, "", null, IntPtr.Zero);
            }

            _qTreeKernel = _qTreePrgm.CreateKernel("QuadTree");
            _crossCullKernel = _qTreePrgm.CreateKernel("CrossCull");

            _activeVerts = new ComputeBuffer<byte>(_context, ComputeMemoryFlags.None, _chunkWidthInVerts*_chunkWidthInVerts);

            _dummy = new ComputeBuffer<int>(_context, ComputeMemoryFlags.None, 50);
            var rawNormals = new ushort[_chunkWidthInVerts * _chunkWidthInVerts * 4];
            _emptyVerts = new byte[_chunkWidthInVerts*_chunkWidthInVerts];
            for (int i = 0; i < _emptyVerts.Length; i++){
                _emptyVerts[i] = 1;
            }
            _cmdQueue.WriteToBuffer(rawNormals, _normals, true, null);
            _cmdQueue.WriteToBuffer(_emptyVerts, _activeVerts, true, null);

            _qTreeKernel.SetValueArgument(1, _chunkWidthInBlocks);
            _qTreeKernel.SetMemoryArgument(2, _normals);
            _qTreeKernel.SetMemoryArgument(3, _activeVerts);
            _qTreeKernel.SetMemoryArgument(4, _dummy);

            _crossCullKernel.SetValueArgument(1, _chunkWidthInBlocks);
            _crossCullKernel.SetMemoryArgument(2, _normals);
            _crossCullKernel.SetMemoryArgument(3, _activeVerts);
            _crossCullKernel.SetMemoryArgument(4, _dummy);

            #endregion

            #region setup winding kernel

            if (loadFromSource){
                _winderPrgm = new ComputeProgram(_context, Gbl.LoadScript("TGen_VertexWinder"));
            #if CPU_DEBUG
                _winderPrgm.Build(null, @"-g -s D:\Projects\Gondola\Scripts\VertexWinder.cl", null, IntPtr.Zero);
            #else
                _winderPrgm.Build(null, "", null, IntPtr.Zero);
            #endif
                Gbl.SaveBinary(_winderPrgm.Binaries, "TGen_VertexWinder");
            }
            else{
                var binary = Gbl.LoadBinary("TGen_VertexWinder");
                _winderPrgm = new ComputeProgram(_context, binary, _devices);
                _winderPrgm.Build(null, "", null, IntPtr.Zero);
            }

            _winderKernel = _winderPrgm.CreateKernel("VertexWinder");
            _indicies = new ComputeBuffer<int>(_context, ComputeMemoryFlags.None, (_chunkWidthInBlocks)*(_chunkWidthInBlocks)*8);

            _winderKernel.SetMemoryArgument(0, _activeVerts);
            _winderKernel.SetMemoryArgument(1, _indicies);

            _emptyIndices = new int[(_chunkWidthInBlocks)*(_chunkWidthInBlocks)*8];
            for (int i = 0; i < (_chunkWidthInBlocks)*(_chunkWidthInBlocks)*8; i++){
                _emptyIndices[i] = 0;
            }
            _cmdQueue.WriteToBuffer(_emptyIndices, _indicies, true, null);

            #endregion

            if (loadFromSource){
                Gbl.AllowMD5Refresh[Gbl.RawDir.Scripts] = true;
            }

            _cmdQueue.Finish();
        }
示例#6
0
 public void CopyToDevice()
 {
     _queue.WriteToBuffer(_cpubuffer, _gpubuffer, true, null);
 }
示例#7
0
        public void Run(IComputeContext context, TextWriter log)
        {
            try
            {
                log.Write("Creating command queue... ");
                var commands = new ComputeCommandQueue(context, context.Devices[0], ComputeCommandQueueFlags.None);
                log.WriteLine("done.");

                log.Write("Generating data... ");

                int      linearSize = 24;
                SysIntX2 rectSize   = new SysIntX2(4, 6);
                SysIntX3 cubicSize  = new SysIntX3(2, 3, 4);
                float[]  linearIn   = new float[linearSize];
                float[]  linearOut  = new float[linearSize];
                float[,] rectIn    = new float[(int)rectSize.Y, (int)rectSize.X];
                float[,] rectOut   = new float[(int)rectSize.Y, (int)rectSize.X];
                float[,,] cubicIn  = new float[(int)cubicSize.Z, (int)cubicSize.Y, (int)cubicSize.X];
                float[,,] cubicOut = new float[(int)cubicSize.Z, (int)cubicSize.Y, (int)cubicSize.X];

                for (int i = 0; i < linearSize; i++)
                {
                    linearIn[i] = i;
                }

                for (int i = 0; i < (int)rectSize.X; i++)
                {
                    for (int j = 0; j < (int)rectSize.Y; j++)
                    {
                        rectIn[j, i] = (float)(rectSize.X.ToInt32() * j + i);
                    }
                }

                for (int i = 0; i < (int)cubicSize.X; i++)
                {
                    for (int j = 0; j < (int)cubicSize.Y; j++)
                    {
                        for (int k = 0; k < (int)cubicSize.Z; k++)
                        {
                            cubicIn[k, j, i] = (float)(k * cubicSize.Y.ToInt32() * cubicSize.X.ToInt32() + cubicSize.X.ToInt32() * j + i);
                        }
                    }
                }

                log.WriteLine("done.");

                log.Write("Creating buffer... ");
                var buffer = new ComputeBuffer <float>(context, ComputeMemoryFlags.ReadWrite, linearSize);
                log.WriteLine("done.");

                GC.Collect();

                log.Write("Writing to buffer (linear)... ");
                commands.WriteToBuffer(linearIn, buffer, false, null);
                log.WriteLine("done.");

                log.Write("Reading from buffer (linear)... ");
                commands.ReadFromBuffer(buffer, ref linearOut, false, null);
                log.WriteLine("done.");

                GC.Collect();

                commands.Finish();

                log.Write("Comparing data... ");
                Compare(linearIn, linearOut);
                log.WriteLine("passed.");

                GC.Collect();

                log.Write("Writing to buffer (rectangular)... ");
                commands.WriteToBuffer(rectIn, buffer, false, new SysIntX2(), new SysIntX2(), rectSize, null);
                log.WriteLine("done.");

                GC.Collect();

                log.Write("Reading from buffer (rectangular)... ");
                commands.ReadFromBuffer(buffer, ref rectOut, false, new SysIntX2(), new SysIntX2(), rectSize, null);
                log.WriteLine("done.");

                GC.Collect();

                commands.Finish();

                log.Write("Comparing data... ");
                Compare(rectIn, rectOut);
                log.WriteLine("passed.");

                GC.Collect();

                log.Write("Writing to buffer (cubic)... ");
                commands.WriteToBuffer(cubicIn, buffer, false, new SysIntX3(), new SysIntX3(), cubicSize, null);
                log.WriteLine("done.");

                GC.Collect();

                log.Write("Reading from buffer (cubic)... ");
                commands.ReadFromBuffer(buffer, ref cubicOut, false, new SysIntX3(), new SysIntX3(), cubicSize, null);
                log.WriteLine("done.");

                GC.Collect();

                commands.Finish();

                log.Write("Comparing data... ");
                Compare(cubicIn, cubicOut);
                log.WriteLine("passed.");
            }
            catch (Exception e)
            {
                log.WriteLine(e.ToString());
            }
        }
            public unsafe void EndSend()
            {
                for (int i = 0; i < points.Count; i++)
                {
                  inx[i].x = (float)points[i].Item3.Real;
                  inx[i].y = (float)points[i].Item3.Imaginary;
                  inc[i].x = (float)points[i].Item4.Real;
                  inc[i].y = (float)points[i].Item4.Imaginary;
                }

                _krnl.SetMemoryArgument(0, x);
                _krnl.SetMemoryArgument(1, c);
                for (int i = 0; i < _ld.Count; i++)
                {
                  _krnl.SetMemoryArgument(2 + i, outp[i]);
                }

                ComputeCommandQueue command = new ComputeCommandQueue(_context, _context.Devices[0], ComputeCommandQueueFlags.None);
                command.WriteToBuffer(inx, x, false, null);
                command.WriteToBuffer(inc, c, false, null);

                command.Execute(_krnl, null, new long[] { points.Count }, null, null);

                for (int i = 0; i < _ld.Count; i++)
                  command.ReadFromBuffer(outp[i], ref opl[i], false, null);

                command.Finish();

                output = new Queue<Tuple<int, int, List<ProcessLayer>>>();

                for (int i = 0; i < points.Count; i++)
                {
                  List<ProcessLayer> pl = new List<ProcessLayer>();
                  for (int ii = 0; ii < _ld.Count; ii++)
                  {
                ProcessLayer p = _ld[ii].Clone();
                p.c_active = opl[ii][i].c_active != 0;
                p.c_calc = opl[ii][i].c_calc;
                p.c_cmean = opl[ii][i].c_cmean;
                p.c_cvariance = opl[ii][i].c_cvariance;
                p.c_cvarsx = opl[ii][i].c_cvarsx;
                p.c_isin = opl[ii][i].c_isin != 0;
                p.c_n = opl[ii][i].c_n;
                p.c_old2x = new Complex(opl[ii][i].c_old2x.x,opl[ii][i].c_old2x.y);
                p.c_oldx = new Complex(opl[ii][i].c_oldx.x,opl[ii][i].c_oldx.y);
                p.c_resn = opl[ii][i].c_resn;
                p.c_resx = new Complex(opl[ii][i].c_resx.x,opl[ii][i].c_resx.y);
                p.c_x = new Complex(opl[ii][i].c_x.x,opl[ii][i].c_x.y);
                pl.Add(p);
                  }
                  output.Enqueue(Tuple.Create(points[i].Item1, points[i].Item2, pl));
                }
            }
 public void CopyToDevice()
 {
     queue.WriteToBuffer(cpuBuffer, gpuBuffer, true, null);
 }
示例#10
0
        private void CalculateConvolution(ComputeContext computeContext)
        {
            Stopwatch stopwatch = new Stopwatch();

            stopwatch.Start();

            float dx;
            bool  shiftXParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dx);

            if (!shiftXParse)
            {
                throw new SyntaxErrorException(", needs to be .");
            }

            float dy;
            bool  shiftYParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dy);

            if (!shiftYParse)
            {
                throw new SyntaxErrorException(", needs to be  .");
            }

            float dz;
            bool  shiftZParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dz);

            if (!shiftZParse)
            {
                throw new SyntaxErrorException(", needs to be  .");
            }

            int pixelCount = _imageDimensionX * _imageDimensionY * _imageDimensionZ;

            Console.WriteLine("Computing...");
            Console.WriteLine("Reading kernel...");

            String kernelPath = Directory.GetParent(Directory.GetCurrentDirectory()).Parent.Parent.FullName;

            String kernelString;

            using (var sr = new StreamReader(kernelPath + "\\convolution.cl"))
                kernelString = sr.ReadToEnd();

            Console.WriteLine("Reading kernel... done");

            float[] selectedTransformation = Transformations.GetTransformation((TransformationType)comboBoxTransform.SelectedItem, 1.0f / float.Parse(textBoxPixelSize.Text), 1.0f / float.Parse(textBoxPixelSize.Text), 1.0f / float.Parse(textBoxPixelSize.Text), dx, dy, dz);

            //create openCL program
            ComputeProgram computeProgram = new ComputeProgram(computeContext, kernelString);

            computeProgram.Build(computeContext.Devices, null, null, IntPtr.Zero);

            ComputeProgramBuildStatus computeProgramBuildStatus = computeProgram.GetBuildStatus(_selectedComputeDevice);

            Console.WriteLine("computeProgramBuildStatus\n\t" + computeProgramBuildStatus);

            String buildLog = computeProgram.GetBuildLog(_selectedComputeDevice);

            Console.WriteLine("buildLog");
            if (buildLog.Equals("\n"))
            {
                Console.WriteLine("\tbuildLog is empty...");
            }
            else
            {
                Console.WriteLine("\t" + buildLog);
            }


            float[] fluorophores = CsvData.ReadFluorophores(_sourceFilename);

/////////////////////////////////////////////
// Create a Command Queue & Event List
/////////////////////////////////////////////
            ComputeCommandQueue computeCommandQueue = new ComputeCommandQueue(computeContext, _selectedComputeDevice, ComputeCommandQueueFlags.None);

////////////////////////////////////////////////////////////////
// Create Buffers Transform
////////////////////////////////////////////////////////////////
            ComputeBuffer <float> fluorophoresCoords = new ComputeBuffer <float>(computeContext, ComputeMemoryFlags.ReadWrite, fluorophores.LongLength);

            ComputeBuffer <float> transformationMatrix = new ComputeBuffer <float>(computeContext, ComputeMemoryFlags.ReadOnly, selectedTransformation.LongLength);

/////////////////////////////////////////////
// Create the transformFluorophoresKernel
///////////////////////////////////////////////////////////
            ComputeKernel transformFluorophoresKernel = computeProgram.CreateKernel("transform_fluorophores");

/////////////////////////////////////////////
// Set the transformFluorophoresKernel arguments
/////////////////////////////////////////////
            transformFluorophoresKernel.SetMemoryArgument(0, fluorophoresCoords);
            transformFluorophoresKernel.SetMemoryArgument(1, transformationMatrix);

/////////////////////////////////////////////
// Configure the work-item structure
/////////////////////////////////////////////
            long[] globalWorkOffsetTransformFluorophoresKernel = null;
            long[] globalWorkSizeTransformFluorophoresKernel   = new long[]   { fluorophores.Length / 4 };
            long[] localWorkSizeTransformFluorophoresKernel    = null;

////////////////////////////////////////////////////////
// Enqueue the transformFluorophoresKernel for execution
////////////////////////////////////////////////////////

            computeCommandQueue.WriteToBuffer(fluorophores, fluorophoresCoords, true, null);
            computeCommandQueue.WriteToBuffer(selectedTransformation, transformationMatrix, true, null);

            computeCommandQueue.Execute(transformFluorophoresKernel, globalWorkOffsetTransformFluorophoresKernel, globalWorkSizeTransformFluorophoresKernel, localWorkSizeTransformFluorophoresKernel, null);
//            computeCommandQueue.ExecuteTask(transformFluorophoresKernel, transformFluorophoresEvents);

            float[] transformedFluorophores = new float[fluorophores.Length];

            computeCommandQueue.ReadFromBuffer(fluorophoresCoords, ref transformedFluorophores, true, null);

            computeCommandQueue.Finish();

            //TODO remove, only for testing
//            for (int i = 0; i < transformedFluorophores.Length; i++)
//            {
//                Console.WriteLine(transformedFluorophores[i]);
//            }
            // /TODO remove, only for testing

            stopwatch.Stop();
            Console.WriteLine("Transform fluophores duration:\n\t" + stopwatch.Elapsed);
            stopwatch.Reset();
            stopwatch.Start();
            // fluorophoresCoords are now transformed (done in place)

////////////////////////////////////////////////////////////////
// Create Buffers Convolve Fluorophores
////////////////////////////////////////////////////////////////

            const int convolve_kernel_lwgs = 16;
            int       totalBuffer          = (int)Math.Ceiling(pixelCount / (float)convolve_kernel_lwgs) * convolve_kernel_lwgs;

            ComputeBuffer <float> resultImage = new ComputeBuffer <float>(computeContext, ComputeMemoryFlags.WriteOnly, totalBuffer);

/////////////////////////////////////////////
// Create the transformFluorophoresKernel
/////////////////////////////////////////////
            ComputeKernel convolveFluorophoresKernel = computeProgram.CreateKernel("convolve_fluorophores");

/////////////////////////////////////////////
// Set the convolveFluorophoresKernel arguments
/////////////////////////////////////////////

            convolveFluorophoresKernel.SetMemoryArgument(0, resultImage);
            convolveFluorophoresKernel.SetValueArgument(1, _imageDimensionX);
            convolveFluorophoresKernel.SetValueArgument(2, _imageDimensionY);
            convolveFluorophoresKernel.SetMemoryArgument(3, fluorophoresCoords);
            convolveFluorophoresKernel.SetLocalArgument(4, convolve_kernel_lwgs);
            convolveFluorophoresKernel.SetValueArgument(5, fluorophores.Length / 4);

/////////////////////////////////////////////
// Configure the work-item structure
/////////////////////////////////////////////
            long[] globalWorkOffsetTransformConvolveFluorophoresKernel = null;
            long[] globalWorkSizeTransformConvolveFluorophoresKernel   = new long[] { pixelCount };
            long[] localWorkSizeTransformConvolveFluorophoresKernel    = new long[] { convolve_kernel_lwgs };

////////////////////////////////////////////////////////
// Enqueue the convolveFluorophoresKernel for execution
////////////////////////////////////////////////////////

            computeCommandQueue.Execute(convolveFluorophoresKernel, globalWorkOffsetTransformConvolveFluorophoresKernel, globalWorkSizeTransformConvolveFluorophoresKernel, localWorkSizeTransformConvolveFluorophoresKernel, null);

            float[] resultImageData = new float[totalBuffer];
            computeCommandQueue.ReadFromBuffer(resultImage, ref resultImageData, true, null);

            computeCommandQueue.Finish();

            for (int i = 0; i < pixelCount; i++)
            {
                Console.WriteLine(resultImageData[i]);
            }

            Console.WriteLine("Writing data to file...");
//            CsvData.WriteToDisk("..\\..\\..\\output.csv", resultImageData);
            TiffData.WriteToDisk(resultImageData, _saveFilename, _imageDimensionX, _imageDimensionY);

            Bitmap bitmap = new Bitmap(_imageDimensionX, _imageDimensionY);

            float max = resultImageData.Max();

            float scale = 255 / (float)max;

//            for (int r = 0; r < _imageDimensionY; r++)
//            {
//                for (int c = 0; c < _imageDimensionX; c++)
//                {
//                    float value = resultImageData[c*(r + 1)];
//                    Color newColor = Color.FromArgb((int)(value * scale), (int)(value * scale), (int)(value * scale));
//                    bitmap.SetPixel(c,r, newColor);
//                }
//            }

            ushort[] ushortdata = new ushort[resultImageData.Length];

            for (int i = 0; i < resultImageData.Length; i++)
            {
                ushortdata[i] = (ushort)resultImageData[i];
            }

            uint[] convertGray16ToRgb = ConvertGray16ToRGB(ushortdata, 16);

            byte[] bytes = new byte[convertGray16ToRgb.Length * 4];
//
//            int[] resultImageData2 = new int[resultImageData.Length];
//
            for (int index = 0; index < convertGray16ToRgb.Length; index++)
            {
//                resultImageData2[index] = (int)(scale*resultImageData[index]);

                byte[] bytes1 = BitConverter.GetBytes(convertGray16ToRgb[index]);
                bytes[index]         = bytes1[0];
                bytes[4 * index + 1] = bytes1[1];
                bytes[4 * index + 2] = bytes1[2];
                bytes[4 * index + 3] = bytes1[3];
            }
//
//            for (int r = 0; r < _imageDimensionY; r++)
//            {
//                for (int c = 0; c < _imageDimensionX; c++)
//                {
//                    float value = resultImageData2[c*(r + 1)];
//                    Color newColor = Color.FromArgb((int)(value), (int)(value), (int)(value));
//                    bitmap.SetPixel(c,r, newColor);
//                }
//            }
//            bitmap.Save("c:\\temp.bmp");


            using (MemoryStream ms = new MemoryStream(bytes))
            {
                Image image = Bitmap.FromStream(ms);
                image.Save("c:\\temp.bmp");
            }

            Console.WriteLine("Writing data to file... done");

            stopwatch.Stop();
            Console.WriteLine("Convolve fluophores duration:\n\t" + stopwatch.Elapsed);
            Console.WriteLine("Computing... done");
        }
示例#11
0
        private void CalculateConvolution(ComputeContext computeContext)
        {
            Stopwatch stopwatch = new Stopwatch();
            stopwatch.Start();

            float dx;
            bool shiftXParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dx);
            if (!shiftXParse)
                throw new SyntaxErrorException(", needs to be .");

            float dy;
            bool shiftYParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dy);
            if (!shiftYParse)
                throw new SyntaxErrorException(", needs to be  .");

            float dz;
            bool shiftZParse = float.TryParse(textBoxShiftX.Text, NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out dz);
            if (!shiftZParse)
                throw new SyntaxErrorException(", needs to be  .");

            int pixelCount = _imageDimensionX*_imageDimensionY*_imageDimensionZ;

            Console.WriteLine("Computing...");
            Console.WriteLine("Reading kernel...");

            String kernelPath = Directory.GetParent(Directory.GetCurrentDirectory()).Parent.Parent.FullName;

            String kernelString;
            using (var sr = new StreamReader(kernelPath + "\\convolution.cl"))
                kernelString = sr.ReadToEnd();

            Console.WriteLine("Reading kernel... done");

            float[] selectedTransformation = Transformations.GetTransformation((TransformationType)comboBoxTransform.SelectedItem, 1.0f / float.Parse(textBoxPixelSize.Text), 1.0f / float.Parse(textBoxPixelSize.Text), 1.0f / float.Parse(textBoxPixelSize.Text), dx, dy, dz);

            //create openCL program
            ComputeProgram computeProgram = new ComputeProgram(computeContext, kernelString);

            computeProgram.Build(computeContext.Devices, null, null, IntPtr.Zero);

            ComputeProgramBuildStatus computeProgramBuildStatus = computeProgram.GetBuildStatus(_selectedComputeDevice);
            Console.WriteLine("computeProgramBuildStatus\n\t"+computeProgramBuildStatus);

            String buildLog = computeProgram.GetBuildLog(_selectedComputeDevice);
            Console.WriteLine("buildLog");
            if (buildLog.Equals("\n"))
                Console.WriteLine("\tbuildLog is empty...");
            else
                Console.WriteLine("\t" + buildLog);

            float[] fluorophores = CsvData.ReadFluorophores(_sourceFilename);

            /////////////////////////////////////////////
            // Create a Command Queue & Event List
            /////////////////////////////////////////////
            ComputeCommandQueue computeCommandQueue = new ComputeCommandQueue(computeContext, _selectedComputeDevice, ComputeCommandQueueFlags.None);

            ////////////////////////////////////////////////////////////////
            // Create Buffers Transform
            ////////////////////////////////////////////////////////////////
            ComputeBuffer<float> fluorophoresCoords = new ComputeBuffer<float>(computeContext, ComputeMemoryFlags.ReadWrite, fluorophores.LongLength);

            ComputeBuffer<float> transformationMatrix = new ComputeBuffer<float>(computeContext, ComputeMemoryFlags.ReadOnly, selectedTransformation.LongLength);

            /////////////////////////////////////////////
            // Create the transformFluorophoresKernel
            ///////////////////////////////////////////////////////////
            ComputeKernel transformFluorophoresKernel = computeProgram.CreateKernel("transform_fluorophores");

            /////////////////////////////////////////////
            // Set the transformFluorophoresKernel arguments
            /////////////////////////////////////////////
            transformFluorophoresKernel.SetMemoryArgument(0, fluorophoresCoords);
            transformFluorophoresKernel.SetMemoryArgument(1, transformationMatrix);

            /////////////////////////////////////////////
            // Configure the work-item structure
            /////////////////////////////////////////////
            long[] globalWorkOffsetTransformFluorophoresKernel = null;
            long[] globalWorkSizeTransformFluorophoresKernel = new long[]   { fluorophores.Length / 4 };
            long[] localWorkSizeTransformFluorophoresKernel = null;

            ////////////////////////////////////////////////////////
            // Enqueue the transformFluorophoresKernel for execution
            ////////////////////////////////////////////////////////

            computeCommandQueue.WriteToBuffer(fluorophores, fluorophoresCoords, true, null);
            computeCommandQueue.WriteToBuffer(selectedTransformation, transformationMatrix, true, null);

            computeCommandQueue.Execute(transformFluorophoresKernel, globalWorkOffsetTransformFluorophoresKernel, globalWorkSizeTransformFluorophoresKernel, localWorkSizeTransformFluorophoresKernel, null);
            //            computeCommandQueue.ExecuteTask(transformFluorophoresKernel, transformFluorophoresEvents);

            float[] transformedFluorophores = new float[fluorophores.Length];

            computeCommandQueue.ReadFromBuffer(fluorophoresCoords, ref transformedFluorophores, true, null);

            computeCommandQueue.Finish();

            //TODO remove, only for testing
            //            for (int i = 0; i < transformedFluorophores.Length; i++)
            //            {
            //                Console.WriteLine(transformedFluorophores[i]);
            //            }
            // /TODO remove, only for testing

            stopwatch.Stop();
            Console.WriteLine("Transform fluophores duration:\n\t" + stopwatch.Elapsed);
            stopwatch.Reset();
            stopwatch.Start();
            // fluorophoresCoords are now transformed (done in place)

            ////////////////////////////////////////////////////////////////
            // Create Buffers Convolve Fluorophores
            ////////////////////////////////////////////////////////////////

            const int convolve_kernel_lwgs = 16;
            int totalBuffer = (int) Math.Ceiling(pixelCount / (float)convolve_kernel_lwgs) * convolve_kernel_lwgs;

            ComputeBuffer<float> resultImage = new ComputeBuffer<float>(computeContext, ComputeMemoryFlags.WriteOnly, totalBuffer);

            /////////////////////////////////////////////
            // Create the transformFluorophoresKernel
            /////////////////////////////////////////////
            ComputeKernel convolveFluorophoresKernel = computeProgram.CreateKernel("convolve_fluorophores");

            /////////////////////////////////////////////
            // Set the convolveFluorophoresKernel arguments
            /////////////////////////////////////////////

            convolveFluorophoresKernel.SetMemoryArgument(0, resultImage);
            convolveFluorophoresKernel.SetValueArgument(1, _imageDimensionX);
            convolveFluorophoresKernel.SetValueArgument(2, _imageDimensionY);
            convolveFluorophoresKernel.SetMemoryArgument(3, fluorophoresCoords);
            convolveFluorophoresKernel.SetLocalArgument(4, convolve_kernel_lwgs);
            convolveFluorophoresKernel.SetValueArgument(5, fluorophores.Length / 4);

            /////////////////////////////////////////////
            // Configure the work-item structure
            /////////////////////////////////////////////
            long[] globalWorkOffsetTransformConvolveFluorophoresKernel = null;
            long[] globalWorkSizeTransformConvolveFluorophoresKernel = new long[] { pixelCount };
            long[] localWorkSizeTransformConvolveFluorophoresKernel = new long[] {convolve_kernel_lwgs};

            ////////////////////////////////////////////////////////
            // Enqueue the convolveFluorophoresKernel for execution
            ////////////////////////////////////////////////////////

            computeCommandQueue.Execute(convolveFluorophoresKernel, globalWorkOffsetTransformConvolveFluorophoresKernel, globalWorkSizeTransformConvolveFluorophoresKernel, localWorkSizeTransformConvolveFluorophoresKernel, null);

            float[] resultImageData = new float[totalBuffer];
            computeCommandQueue.ReadFromBuffer(resultImage, ref resultImageData, true, null);

            computeCommandQueue.Finish();

            for (int i = 0; i < pixelCount; i++)
            {
                Console.WriteLine(resultImageData[i]);
            }

            Console.WriteLine("Writing data to file...");
            //            CsvData.WriteToDisk("..\\..\\..\\output.csv", resultImageData);
            TiffData.WriteToDisk(resultImageData, _saveFilename, _imageDimensionX, _imageDimensionY);

            Bitmap bitmap = new Bitmap(_imageDimensionX, _imageDimensionY);

            float max = resultImageData.Max();

            float scale = 255/(float)max;

            //            for (int r = 0; r < _imageDimensionY; r++)
            //            {
            //                for (int c = 0; c < _imageDimensionX; c++)
            //                {
            //                    float value = resultImageData[c*(r + 1)];
            //                    Color newColor = Color.FromArgb((int)(value * scale), (int)(value * scale), (int)(value * scale));
            //                    bitmap.SetPixel(c,r, newColor);
            //                }
            //            }

            ushort[] ushortdata = new ushort[resultImageData.Length];

            for (int i = 0; i < resultImageData.Length; i++)
            {
                ushortdata[i] = (ushort)resultImageData[i];
            }

            uint[] convertGray16ToRgb = ConvertGray16ToRGB(ushortdata, 16);

            byte[] bytes = new byte[convertGray16ToRgb.Length * 4];
            //
            //            int[] resultImageData2 = new int[resultImageData.Length];
            //
            for (int index = 0; index < convertGray16ToRgb.Length; index++)
            {
            //                resultImageData2[index] = (int)(scale*resultImageData[index]);

                byte[] bytes1 = BitConverter.GetBytes(convertGray16ToRgb[index]);
                bytes[index] = bytes1[0];
                bytes[4 * index + 1] = bytes1[1];
                bytes[4 * index + 2] = bytes1[2];
                bytes[4 * index + 3] = bytes1[3];
            }
            //
            //            for (int r = 0; r < _imageDimensionY; r++)
            //            {
            //                for (int c = 0; c < _imageDimensionX; c++)
            //                {
            //                    float value = resultImageData2[c*(r + 1)];
            //                    Color newColor = Color.FromArgb((int)(value), (int)(value), (int)(value));
            //                    bitmap.SetPixel(c,r, newColor);
            //                }
            //            }
            //            bitmap.Save("c:\\temp.bmp");

            using (MemoryStream ms = new MemoryStream(bytes))
            {
                Image image = Bitmap.FromStream(ms);
                image.Save("c:\\temp.bmp");
            }

            Console.WriteLine("Writing data to file... done");

            stopwatch.Stop();
            Console.WriteLine("Convolve fluophores duration:\n\t" + stopwatch.Elapsed);
            Console.WriteLine("Computing... done");
        }
示例#12
0
文件: Renderer.cs 项目: Woltvint/DIRT
        private static bool prepTris()
        {
            int width  = frame.GetLength(0);
            int height = frame.GetLength(1);

            List <tris> tris = new List <tris>();
            List <vec>  poss = new List <vec>();
            List <vec>  rots = new List <vec>();


            int[] options = new int[4];

            vec[] cam = new vec[3];

            cam[0] = eye.toVec();
            Vector look = new Vector(0, 0, 1, 0);
            Vector up   = new Vector(0, 1, 0, 0);

            look  *= Matrix4x4.rotationXMatrix(ConsoleSettings.cameraRot.x);
            look  *= Matrix4x4.rotationYMatrix(ConsoleSettings.cameraRot.y);
            cam[1] = look.toVec();
            cam[2] = up.toVec();

            foreach (Mesh m in ConsoleRenderer.Meshes)
            {
                foreach (Triangle t in m.tris)
                {
                    tris.Add(t.toTris());

                    poss.Add(m.position.toVec());
                    rots.Add(m.rotation.toVec());
                }
            }

            options[0] = tris.Count;
            options[1] = width;
            options[2] = height;

            if (tris.Count <= 0)
            {
                return(false);
            }

            if (lastTriCount != tris.Count)
            {
                gTris    = new ComputeBuffer <tris>(context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, tris.ToArray());
                gOptions = new ComputeBuffer <int>(context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, options);
                gCam     = new ComputeBuffer <vec>(context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, cam);
                gPos     = new ComputeBuffer <vec>(context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, poss.ToArray());
                gRot     = new ComputeBuffer <vec>(context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, rots.ToArray());
                gTexture = new ComputeBuffer <float>(context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, texture);
            }
            else
            {
                commands.WriteToBuffer(tris.ToArray(), gTris, false, eventList);
                commands.WriteToBuffer(options, gOptions, false, eventList);
                commands.WriteToBuffer(cam, gCam, false, eventList);
                commands.WriteToBuffer(rots.ToArray(), gRot, false, eventList);
                commands.WriteToBuffer(poss.ToArray(), gPos, false, eventList);
                commands.WriteToBuffer(texture, gTexture, false, eventList);
            }



            prepTrisKernel.SetMemoryArgument(0, gTris);
            prepTrisKernel.SetMemoryArgument(1, gOptions);
            prepTrisKernel.SetMemoryArgument(2, gRot);
            prepTrisKernel.SetMemoryArgument(3, gPos);
            prepTrisKernel.SetMemoryArgument(4, gCam);

            commands.Execute(prepTrisKernel, null, new long[] { tris.Count }, null, eventList);


            return(true);
        }
示例#13
0
 /// <summary>
 /// Copy the material data to the GPU.
 /// </summary>
 /// <param name="commandQueue"></param>
 public void syncBuffer(ComputeCommandQueue commandQueue)
 {
     // TODO: try non-blocking sends.
     commandQueue.WriteToBuffer<Material>(_materialArray, Buffer, true, null);
 }
示例#14
0
        public static void VectorSumHandler(HttpListenerContext context)
        {
            HttpListenerRequest  request  = context.Request;
            HttpListenerResponse response = context.Response;
            string vecSum = @"
                __kernel void vectorSum(__global float *v1, __global float *v2, __global float *v3) {
                    int i = get_global_id(0);
                    v3[i] = v1[i] + v2[i];
                }
            ";
            int    size   = 100000;

            float[] v1_ = new float[size];
            float[] v2_ = new float[size];
            float[] v3_ = new float[size];
            for (var i = 0; i < size; i++)
            {
                v1_[i] = (float)i;
                v2_[i] = (float).5f;
            }
            var platform_ = ComputePlatform.Platforms[0];
            ComputeContextPropertyList properties = new ComputeContextPropertyList(platform_);
            ComputeContext             ctx        = new ComputeContext(ComputeDeviceTypes.Gpu, properties, null, IntPtr.Zero);
            ComputeCommandQueue        commands   = new ComputeCommandQueue(ctx, ctx.Devices[0], ComputeCommandQueueFlags.None);
            ComputeProgram             program    = new ComputeProgram(ctx, vecSum);

            try
            {
                program.Build(null, null, null, IntPtr.Zero);
                Console.WriteLine("program build completed");
            }
            catch
            {
                string log = program.GetBuildLog(ctx.Devices[0]);
            }
            ComputeBuffer <float> v1, v2, v3;

            v1 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, v1_);
            v2 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, v2_);
            v3 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.WriteOnly | ComputeMemoryFlags.CopyHostPointer, v3_);
            long[] worker = { size };
            commands.WriteToBuffer(v1_, v1, false, null);
            commands.WriteToBuffer(v2_, v2, false, null);
            ComputeKernel sumKernal = program.CreateKernel("vectorSum");

            Console.WriteLine("kernal created");
            sumKernal.SetMemoryArgument(0, v1);
            sumKernal.SetMemoryArgument(1, v2);
            sumKernal.SetMemoryArgument(2, v3);
            commands.Execute(sumKernal, null, worker, null, null);
            Console.WriteLine("Executed");
            commands.ReadFromBuffer <float>(v3, ref v3_, false, null);
            StringBuilder sb = new StringBuilder();

            for (int i = 0; i < size; i++)
            {
                sb.AppendFormat("{0} + {1} = {2}<br>", v1_[i].ToString(), v2_[i].ToString(), v3_[i].ToString());
            }
            var    sum_expression_result = sb.ToString();
            string responseString        = string.Format("<html><body>{0}</body></html>", sum_expression_result);

            byte[] buffer = Encoding.UTF8.GetBytes(responseString);
            response.ContentLength64 = buffer.Length;
            Stream output = response.OutputStream;

            output.Write(buffer, 0, buffer.Length);
            output.Close();
        }
示例#15
0
        public static void CustomHandler(HttpListenerContext context)
        {
            HttpListenerRequest  request  = context.Request;
            HttpListenerResponse response = context.Response;
            string       responseString;
            Stream       body     = request.InputStream;
            Encoding     encoding = request.ContentEncoding;
            StreamReader reader   = new StreamReader(body, encoding);
            var          data     = reader.ReadToEnd();
            var          props    = JsonSerializer.Deserialize <OpenCLPOCO>(data);
            string       vecSum   = props.code;
            int          size     = props.v1.Length;

            float[] v1_       = props.v1;
            float[] v2_       = props.v2;
            float[] v3_       = new float[size];
            var     platform_ = ComputePlatform.Platforms[0];
            ComputeContextPropertyList properties = new ComputeContextPropertyList(platform_);
            ComputeContext             ctx        = new ComputeContext(ComputeDeviceTypes.Gpu, properties, null, IntPtr.Zero);
            ComputeCommandQueue        commands   = new ComputeCommandQueue(ctx, ctx.Devices[0], ComputeCommandQueueFlags.None);
            ComputeProgram             program    = new ComputeProgram(ctx, vecSum);

            try
            {
                program.Build(null, null, null, IntPtr.Zero);
                Console.WriteLine("program build completed");
            }
            catch
            {
                string log = program.GetBuildLog(ctx.Devices[0]);
            }
            ComputeBuffer <float> v1, v2, v3;

            v1 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, v1_);
            v2 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer, v2_);
            v3 = new ComputeBuffer <float>(ctx, ComputeMemoryFlags.WriteOnly | ComputeMemoryFlags.CopyHostPointer, v3_);
            long[] worker = { size };
            commands.WriteToBuffer(v1_, v1, false, null);
            commands.WriteToBuffer(v2_, v2, false, null);
            try
            {
                ComputeKernel sumKernal = program.CreateKernel("vectorSum");
                Console.WriteLine("kernal created");
                sumKernal.SetMemoryArgument(0, v1);
                sumKernal.SetMemoryArgument(1, v2);
                sumKernal.SetMemoryArgument(2, v3);
                commands.Execute(sumKernal, null, worker, null, null);
                Console.WriteLine("Executed");
                commands.ReadFromBuffer <float>(v3, ref v3_, false, null);
                StringBuilder sb = new StringBuilder();
                for (int i = 0; i < size; i++)
                {
                    sb.AppendFormat("Ω({0}, {1}) = {2}<br>", v1_[i].ToString(), v2_[i].ToString(), v3_[i].ToString());
                }
                var sum_expression_result = sb.ToString();
                responseString = string.Format("{0}", sum_expression_result);
            } catch (Exception e)
            {
                responseString = e.Message;
            }

            byte[] buffer = Encoding.UTF8.GetBytes(responseString);
            response.ContentLength64 = buffer.Length;
            Stream output = response.OutputStream;

            output.Write(buffer, 0, buffer.Length);
            output.Close();
        }