示例#1
0
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
//ORIGINAL LINE: protected void initWithDefaultTransitions(org.maltparser.parser.history.GuideUserHistory history) throws org.maltparser.core.exception.MaltChainedException
        protected internal override void initWithDefaultTransitions(GuideUserHistory history)
        {
            GuideUserAction currentAction = new ComplexDecisionAction(history);

            transActionContainer.Action = SHIFT;
            for (int i = 0; i < arcLabelActionContainers.Length; i++)
            {
                arcLabelActionContainers[i].Action = -1;
            }
            currentAction.addAction(actionContainers);
        }
示例#2
0
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
//ORIGINAL LINE: protected void initWithDefaultTransitions(org.maltparser.parser.history.GuideUserHistory history) throws org.maltparser.core.exception.MaltChainedException
        protected internal override void initWithDefaultTransitions(GuideUserHistory history)
        {
            GuideUserAction currentAction = new ComplexDecisionAction(history);

            transActionContainer.Action = SHIFT;
            transActionContainer.Action = REDUCE;
            transActionContainer.Action = SWITCH;             //TODO it seems like a good idea to do this, but I don't know what it actually does
            transActionContainer.Action = REDUCEBOTH;         //TODO same as above
            for (int i = 0; i < arcLabelActionContainers.Length; i++)
            {
                arcLabelActionContainers[i].Action = -1;
            }
            currentAction.addAction(actionContainers);
        }
示例#3
0
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
//ORIGINAL LINE: public boolean predictFromKBestList(org.maltparser.core.feature.FeatureModel featureModel, org.maltparser.parser.history.action.ComplexDecisionAction decision) throws org.maltparser.core.exception.MaltChainedException
        public bool predictFromKBestList(FeatureModel featureModel, ComplexDecisionAction decision)
        {
            predict(featureModel, decision, false);
            if (decision.numberOfDecisions() == 1)
            {
                return(decision.getSingleDecision(0).updateFromKBestList());
            }
            else if (decision.numberOfDecisions() > 2)
            {
                throw new MaltChainedException("Number of decisions is greater than two,  which is unsupported in the light-weight parser (lw.parser)");
            }
            bool success = false;

            if (decision.getSingleDecision(0).continueWithNextDecision())
            {
                success = decision.getSingleDecision(1).updateFromKBestList();
            }
            return(success);
        }
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
//ORIGINAL LINE: public LWDeterministicParser(LWSingleMalt lwSingleMalt, org.maltparser.core.symbol.SymbolTableHandler symbolTableHandler) throws org.maltparser.core.exception.MaltChainedException
        public LWDeterministicParser(LWSingleMalt lwSingleMalt, SymbolTableHandler symbolTableHandler)
        {
            manager  = lwSingleMalt;
            registry = new ParserRegistry();
            registry.SymbolTableHandler = symbolTableHandler;
            registry.DataFormatInstance = manager.DataFormatInstance;
            registry.setAbstractParserFeatureFactory(manager.ParserFactory);
            registry.Algorithm = this;
            transitionSystem   = manager.ParserFactory.makeTransitionSystem();
            transitionSystem.initTableHandlers(lwSingleMalt.DecisionSettings, symbolTableHandler);

            tableHandlers  = transitionSystem.TableHandlers;
            kBestSize      = lwSingleMalt.getkBestSize();
            decisionTables = new List <TableContainer>();
            actionTables   = new List <TableContainer>();
            initDecisionSettings(lwSingleMalt.DecisionSettings, lwSingleMalt.Classitem_separator);
            transitionSystem.initTransitionSystem(this);
            config        = manager.ParserFactory.makeParserConfiguration();
            featureModel  = manager.FeatureModelManager.getFeatureModel(lwSingleMalt.FeatureModelURL, 0, registry, manager.DataSplitColumn, manager.DataSplitStructure);
            currentAction = new ComplexDecisionAction(this);
        }
示例#5
0
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
//ORIGINAL LINE: public boolean predict(org.maltparser.core.feature.FeatureModel featureModel, org.maltparser.parser.history.action.ComplexDecisionAction decision, boolean one_prediction) throws org.maltparser.core.exception.MaltChainedException
        public bool predict(FeatureModel featureModel, ComplexDecisionAction decision, bool one_prediction)
        {
            if (decision.numberOfDecisions() > 2)
            {
                throw new MaltChainedException("Number of decisions is greater than two,  which is unsupported in the light-weight parser (lw.parser)");
            }
            featureModel.update();
            bool success = true;

            for (int i = 0; i < decision.numberOfDecisions(); i++)
            {
                LWClassifier classifier = null;
//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final org.maltparser.parser.history.action.SingleDecision singleDecision = decision.getSingleDecision(i);
                SingleDecision singleDecision = decision.getSingleDecision(i);
//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final StringBuilder classifierString = new StringBuilder();
                StringBuilder classifierString = new StringBuilder();

//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final StringBuilder decisionModelString = new StringBuilder();
                StringBuilder decisionModelString = new StringBuilder();
                if (singleDecision.RelationToNextDecision == RelationToNextDecision.BRANCHED)
                {
                    decisionModelString.Append("bdm");
                }
                else if (singleDecision.RelationToNextDecision == RelationToNextDecision.SEQUANTIAL)
                {
                    decisionModelString.Append("sdm");
                }
                else
                {
                    decisionModelString.Append("odm");
                }
                decisionModelString.Append(i);
                string decisionSymbol = "";
                if (i == 1 && singleDecision.RelationToNextDecision == RelationToNextDecision.BRANCHED)
                {
                    decisionSymbol = singleDecision.DecisionSymbol;
                    decisionModelString.Append(decisionSymbol);
                }
                decisionModelString.Append('.');
                FeatureVector featureVector = featureModel.getFeatureVector(decisionSymbol, singleDecision.TableContainer.TableContainerName);

                if (featureModel.hasDivideFeatureFunction())
                {
                    SingleFeatureValue featureValue = (SingleFeatureValue)featureModel.DivideFeatureFunction.FeatureValue;
                    classifierString.Append(decisionModelString);
                    classifierString.Append(string.Format("{0:D3}", featureValue.IndexCode));
                    classifierString.Append('.');
                    classifierString.Append(classifierName);
                    classifier = classifiers[classifierString.ToString()];
                    if (classifier != null)
                    {
                        FeatureVector dividefeatureVector = featureModel.getFeatureVector("/" + featureVector.SpecSubModel.SubModelName);
                        success = classifier.predict(dividefeatureVector, singleDecision, one_prediction) && success;
                        continue;
                    }
                    classifierString.Length = 0;
                }

                classifierString.Append(decisionModelString);
                classifierString.Append(classifierName);
                classifier = classifiers[classifierString.ToString()];
                if (classifier != null)
                {
                    success = classifier.predict(featureVector, singleDecision, one_prediction) && success;
                }
                else
                {
                    singleDecision.addDecision(1);
                }
                if (!singleDecision.continueWithNextDecision())
                {
                    break;
                }
            }
            return(success);
        }