/// <summary>
        /// Calculate Cholesky step
        /// </summary>
        /// <param name="data">Factor matrix</param>
        /// <param name="rowDim">Number of rows</param>
        /// <param name="firstCol">Column start</param>
        /// <param name="colLimit">Total columns</param>
        /// <param name="multipliers">Multipliers calculated previously</param>
        /// <param name="availableCores">Number of available processors</param>
        static void DoCholeskyStep(Matrix <Complex32> data, int rowDim, int firstCol, int colLimit, Complex32[] multipliers, int availableCores)
        {
            var tmpColCount = colLimit - firstCol;

            if ((availableCores > 1) && (tmpColCount > 200))
            {
                var tmpSplit = firstCol + (tmpColCount / 3);
                var tmpCores = availableCores / 2;

                CommonParallel.Invoke(
                    () => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
                    () => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
            }
            else
            {
                for (var j = firstCol; j < colLimit; j++)
                {
                    var tmpVal = multipliers[j];
                    for (var i = j; i < rowDim; i++)
                    {
                        data.At(i, j, data.At(i, j) - (multipliers[i] * tmpVal.Conjugate()));
                    }
                }
            }
        }
示例#2
0
        /// <summary>
        /// Perform calculation of Q or R
        /// </summary>
        /// <param name="u">Work array</param>
        /// <param name="a">Q or R matrices</param>
        /// <param name="rowStart">The first row</param>
        /// <param name="rowDim">The last row</param>
        /// <param name="columnStart">The first column</param>
        /// <param name="columnDim">The last column</param>
        /// <param name="availableCores">Number of available CPUs</param>
        private static void ComputeQR(double[] u, Matrix <double> a, int rowStart, int rowDim, int columnStart, int columnDim, int availableCores)
        {
            if (rowDim < rowStart || columnDim < columnStart)
            {
                return;
            }

            var tmpColCount = columnDim - columnStart;

            if ((availableCores > 1) && (tmpColCount > 200))
            {
                var tmpSplit = columnStart + (tmpColCount / 2);
                var tmpCores = availableCores / 2;

                CommonParallel.Invoke(
                    () => ComputeQR(u, a, rowStart, rowDim, columnStart, tmpSplit, tmpCores),
                    () => ComputeQR(u, a, rowStart, rowDim, tmpSplit, columnDim, tmpCores));
            }
            else
            {
                for (var j = columnStart; j < columnDim; j++)
                {
                    var scale = 0.0;
                    for (var i = rowStart; i < rowDim; i++)
                    {
                        scale += u[i - rowStart] * a.At(i, j);
                    }

                    for (var i = rowStart; i < rowDim; i++)
                    {
                        a.At(i, j, a.At(i, j) - (u[i - rowStart] * scale));
                    }
                }
            }
        }
        /// <summary>
        ///     Calculate Cholesky step
        /// </summary>
        /// <param name="data">Factor matrix</param>
        /// <param name="rowDim">Number of rows</param>
        /// <param name="firstCol">Column start</param>
        /// <param name="colLimit">Total columns</param>
        /// <param name="multipliers">Multipliers calculated previously</param>
        /// <param name="availableCores">Number of available processors</param>
        private static void DoCholeskyStep(Matrix <double> data, int rowDim, int firstCol, int colLimit,
                                           double[] multipliers, int availableCores)
        {
            var tmpColCount = colLimit - firstCol;

            if (availableCores > 1 && tmpColCount > 200)
            {
                var tmpSplit = firstCol + tmpColCount / 3;
                var tmpCores = availableCores / 2;

                CommonParallel.Invoke(
                    () => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
                    () => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
            }
            else
            {
                for (var j = firstCol; j < colLimit; j++)
                {
                    var tmpVal = multipliers[j];
                    for (var i = j; i < rowDim; i++)
                    {
                        data.At(i, j, data.At(i, j) - multipliers[i] * tmpVal);
                    }
                }
            }
        }
        /// <summary>
        ///     Calculate Cholesky step
        /// </summary>
        /// <param name="data">Factor matrix</param>
        /// <param name="rowDim">Number of rows</param>
        /// <param name="firstCol">Column start</param>
        /// <param name="colLimit">Total columns</param>
        /// <param name="multipliers">Multipliers calculated previously</param>
        /// <param name="availableCores">Number of available processors</param>
        private static void DoCholeskyStep(double[] data, int rowDim, int firstCol, int colLimit, double[] multipliers,
                                           int availableCores)
        {
            var tmpColCount = colLimit - firstCol;

            if (availableCores > 1 && tmpColCount > Control.ParallelizeElements)
            {
                var tmpSplit = firstCol + tmpColCount / 3;
                var tmpCores = availableCores / 2;

                CommonParallel.Invoke(
                    () => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
                    () => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
            }
            else
            {
                for (var j = firstCol; j < colLimit; j++)
                {
                    var tmpVal = multipliers[j];
                    for (var i = j; i < rowDim; i++)
                    {
                        data[j * rowDim + i] -= multipliers[i] * tmpVal;
                    }
                }
            }
        }
        /// <summary>
        /// Perform calculation of Q or R
        /// </summary>
        /// <param name="u">Work array</param>
        /// <param name="a">Q or R matrices</param>
        /// <param name="rowStart">The first row</param>
        /// <param name="rowDim">The last row</param>
        /// <param name="columnStart">The first column</param>
        /// <param name="columnDim">The last column</param>
        /// <param name="availableCores">Number of available CPUs</param>
        static void ComputeQR(Complex32[] u, Matrix <Complex32> a, int rowStart, int rowDim, int columnStart, int columnDim, int availableCores)
        {
            if ((rowDim < rowStart) || (columnDim < columnStart))
            {
                return;
            }

            var tmpColCount = columnDim - columnStart;

            if ((availableCores > 1) && (tmpColCount > 200))
            {
                var tmpSplit = columnStart + (tmpColCount / 2);
                var tmpCores = availableCores / 2;

                CommonParallel.Invoke(
                    () => ComputeQR(u, a, rowStart, rowDim, columnStart, tmpSplit, tmpCores),
                    () => ComputeQR(u, a, rowStart, rowDim, tmpSplit, columnDim, tmpCores));
            }
            else
            {
                for (var j = columnStart; j < columnDim; j++)
                {
                    var scale = Complex32.Zero;
                    for (var i = rowStart; i < rowDim; i++)
                    {
                        scale += u[i - rowStart] * a.At(i, j);
                    }

                    for (var i = rowStart; i < rowDim; i++)
                    {
                        a.At(i, j, a.At(i, j) - (u[i - rowStart].Conjugate() * scale));
                    }
                }
            }
        }
        static void CacheObliviousMatrixMultiply(double[] matrixA, int shiftArow, int shiftAcol, double[] matrixB, int shiftBrow, int shiftBcol, double[] result, int shiftCrow, int shiftCcol, int m, int n, int k, int constM, int constN, int constK, int level)
        {
            if (m + n <= Control.ParallelizeOrder)
            {
                for (var m1 = 0; m1 < m; m1++)
                {
                    var matArowPos = m1 + shiftArow;
                    var matCrowPos = m1 + shiftCrow;
                    for (var n1 = 0; n1 < n; ++n1)
                    {
                        var    boffset = ((n1 + shiftBcol) * constK) + shiftBrow;
                        double sum     = 0;
                        for (var k1 = 0; k1 < k; ++k1)
                        {
                            sum += matrixA[((k1 + shiftAcol) * constM) + matArowPos] * matrixB[boffset + k1];
                        }

                        result[((n1 + shiftCcol) * constM) + matCrowPos] += sum;
                    }
                }

                return;
            }

            // divide and conquer
            int m2 = m / 2, n2 = n / 2, k2 = k / 2;

            level++;
            if (level <= 2)
            {
                CommonParallel.Invoke(
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k2, constM, constN, constK, level));

                CommonParallel.Invoke(
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k - k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k - k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k - k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k - k2, constM, constN, constK, level));
            }
            else
            {
                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k2, constM, constN, constK, level);

                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k - k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k - k2, constM, constN, constK, level);

                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k2, constM, constN, constK, level);

                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k - k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k - k2, constM, constN, constK, level);
            }
        }
        /// <summary>
        /// Convolution with the bluestein sequence (Parallel Version).
        /// </summary>
        /// <param name="samples">Sample Vector.</param>
        private static void BluesteinConvolutionParallel(Complex[] samples)
        {
            int n = samples.Length;

            Complex[] sequence = BluesteinSequence(n);

            // Padding to power of two >= 2N–1 so we can apply Radix-2 FFT.
            int m = ((n << 1) - 1).CeilingToPowerOfTwo();

            Complex[] b = new Complex[m];
            Complex[] a = new Complex[m];

            CommonParallel.Invoke(
                () =>
            {
                // Build and transform padded sequence b_k = exp(I*Pi*k^2/N)
                for (int i = 0; i < n; i++)
                {
                    b[i] = sequence[i];
                }

                for (int i = m - n + 1; i < b.Length; i++)
                {
                    b[i] = sequence[m - i];
                }

                Radix2(b, -1);
            },
                () =>
            {
                // Build and transform padded sequence a_k = x_k * exp(-I*Pi*k^2/N)
                for (int i = 0; i < samples.Length; i++)
                {
                    a[i] = sequence[i].Conjugate() * samples[i];
                }

                Radix2(a, -1);
            });

            for (int i = 0; i < a.Length; i++)
            {
                a[i] *= b[i];
            }

            Radix2Parallel(a, 1);

            var nbinv = 1.0 / m;

            for (int i = 0; i < samples.Length; i++)
            {
                samples[i] = nbinv * sequence[i].Conjugate() * a[i];
            }
        }
        /// <summary>
        ///     Perform calculation of Q or R
        /// </summary>
        /// <param name="work">Work array</param>
        /// <param name="workIndex">Index of column in work array</param>
        /// <param name="a">Q or R matrices</param>
        /// <param name="rowStart">The first row in </param>
        /// <param name="rowCount">The last row</param>
        /// <param name="columnStart">The first column</param>
        /// <param name="columnCount">The last column</param>
        /// <param name="availableCores">Number of available CPUs</param>
        private static void ComputeQR(double[] work, int workIndex, double[] a, int rowStart, int rowCount,
                                      int columnStart, int columnCount, int availableCores)
        {
            if (rowStart > rowCount || columnStart > columnCount)
            {
                return;
            }

            var tmpColCount = columnCount - columnStart;

            if (availableCores > 1 && tmpColCount > 200)
            {
                var tmpSplit = columnStart + tmpColCount / 2;
                var tmpCores = availableCores / 2;

                CommonParallel.Invoke(
                    () => ComputeQR(work, workIndex, a, rowStart, rowCount, columnStart, tmpSplit, tmpCores),
                    () => ComputeQR(work, workIndex, a, rowStart, rowCount, tmpSplit, columnCount, tmpCores));
            }
            else
            {
                for (var j = columnStart; j < columnCount; j++)
                {
                    var scale = 0.0;
                    for (var i = rowStart; i < rowCount; i++)
                    {
                        scale += work[workIndex * rowCount + i - rowStart] * a[j * rowCount + i];
                    }

                    for (var i = rowStart; i < rowCount; i++)
                    {
                        a[j * rowCount + i] -= work[workIndex * rowCount + i - rowStart] * scale;
                    }
                }
            }
        }
        static void CacheObliviousMatrixMultiply(double[] matrixA, int shiftArow, int shiftAcol, double[] matrixB, int shiftBrow, int shiftBcol, double[] result, int shiftCrow, int shiftCcol, int m, int n, int k, int constM, int constN, int constK, int level)
        {
            if (m + n <= Control.ParallelizeOrder)
            {
                fixed(double *resultPtr = &result[0])
                fixed(double *aPtr = &matrixA[0])
                fixed(double *bPtr = &matrixB[0])
                {
                    double *a = aPtr + shiftArow;
                    double *c = resultPtr + shiftCrow;

                    for (var m1 = 0; m1 < m; m1++)
                    {
                        for (var n1 = 0; n1 < n; ++n1)
                        {
                            double *b   = bPtr + (n1 + shiftBcol) * constK + shiftBrow;
                            double  sum = 0;
                            for (var k1 = 0; k1 < k; ++k1)
                            {
                                sum += a[((k1 + shiftAcol) * constM)] * b[k1];
                            }

                            c[((n1 + shiftCcol) * constM)] += sum;
                        }
                        a++;
                        c++;
                    }
                }

                return;
            }

            // divide and conquer
            int m2 = m / 2, n2 = n / 2, k2 = k / 2;

            level++;
            if (level <= 2)
            {
                CommonParallel.Invoke(
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k2, constM, constN, constK, level));

                CommonParallel.Invoke(
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k - k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k - k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k - k2, constM, constN, constK, level),
                    () => CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k - k2, constM, constN, constK, level));
            }
            else
            {
                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k2, constM, constN, constK, level);

                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow, shiftCcol, m2, n2, k - k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow, shiftCcol + n2, m2, n - n2, k - k2, constM, constN, constK, level);

                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol, matrixB, shiftBrow, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k2, constM, constN, constK, level);

                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol, result, shiftCrow + m2, shiftCcol, m - m2, n2, k - k2, constM, constN, constK, level);
                CacheObliviousMatrixMultiply(matrixA, shiftArow + m2, shiftAcol + k2, matrixB, shiftBrow + k2, shiftBcol + n2, result, shiftCrow + m2, shiftCcol + n2, m - m2, n - n2, k - k2, constM, constN, constK, level);
            }
        }