示例#1
0
        /**
         * <p>
         * Creates a matrix where all but the diagonal elements are zero.  The values
         * of the diagonal elements are specified by the parameter 'vals'.
         * </p>
         *
         * <p>
         * To extract the diagonal elements from a matrix see {@link #diag()}.
         * </p>
         *
         * @see CommonOps_DDRM#diag(double...)
         *
         * @param vals The values of the diagonal elements.
         * @return A diagonal matrix.
         */
        public static SimpleMatrixD diag(double[] vals)
        {
            DMatrixRMaj   m   = CommonOps_DDRM.diag(vals);
            SimpleMatrixD ret = wrap(m);

            return(ret);
        }
示例#2
0
        /**
         * Creates a newJava.Util.Random symmetric matrix that will have the specified real eigenvalues.
         *
         * @param num Dimension of the resulting matrix.
         * @param randJava.Util.Random number generator.
         * @param eigenvalues Set of real eigenvalues that the matrix will have.
         * @return AJava.Util.Random matrix with the specified eigenvalues.
         */
        public static DMatrixRMaj symmetricWithEigenvalues(int num, Java.Util.Random rand, double[] eigenvalues)
        {
            DMatrixRMaj V = RandomMatrices_DDRM.orthogonal(num, num, rand);
            DMatrixRMaj D = CommonOps_DDRM.diag(eigenvalues);

            DMatrixRMaj temp = new DMatrixRMaj(num, num);

            CommonOps_DDRM.mult(V, D, temp);
            CommonOps_DDRM.multTransB(temp, V, D);

            return(D);
        }
示例#3
0
        /**
         * <p>
         * If a vector then a square matrix is returned if a matrix then a vector of diagonal ements is returned
         * </p>
         *
         * @see CommonOps_DDRM#extractDiag(DMatrixRMaj, DMatrixRMaj)
         * @return Diagonal elements inside a vector or a square matrix with the same diagonal elements.
         */
        public T diag <T>()
            where T : SimpleMatrix <W>
        {
            T diag;

            if (bits() == 64)
            {
                if (MatrixFeatures_DDRM.isVector(mat))
                {
                    int N = Math.Max(mat.NumCols, mat.NumRows);
                    diag = (T)createMatrix(N, N, mat.Type);
                    CommonOps_DDRM.diag((DMatrixRMaj)diag.mat, N, ((DMatrixRMaj)mat).data);
                }
                else
                {
                    int N = Math.Min(mat.NumCols, mat.NumRows);
                    diag = (T)createMatrix(N, 1, mat.Type);
                    CommonOps_DDRM.extractDiag((DMatrixRMaj)mat, (DMatrixRMaj)diag.mat);
                }
            }
            else
            {
                if (MatrixFeatures_DDRM.isVector(mat))
                {
                    int N = Math.Max(mat.NumCols, mat.NumRows);
                    diag = (T)createMatrix(N, N, mat.Type);
                    CommonOps_DDRM.diag((DMatrixRMaj)diag.mat, N, ((DMatrixRMaj)mat).data);
                }
                else
                {
                    int N = Math.Min(mat.NumCols, mat.NumRows);
                    diag = (T)createMatrix(N, 1, mat.Type);
                    CommonOps_DDRM.extractDiag((DMatrixRMaj)mat, (DMatrixRMaj)diag.mat);
                }
                //if (MatrixFeatures_FDRM.isVector(mat))
                //{
                //	int N = Math.Max(mat.NumCols, mat.NumRows);
                //	diag = createMatrix(N, N, mat.Type);
                //	CommonOps_FDRM.diag((FMatrixRMaj)diag.mat, N, ((FMatrixRMaj)mat).data);
                //}
                //else
                //{
                //	int N = Math.min(mat.NumCols, mat.NumRows);
                //	diag = createMatrix(N, 1, mat.Type);
                //	CommonOps_FDRM.extractDiag((FMatrixRMaj)mat, (FMatrixRMaj)diag.mat);
                //}
            }

            return(diag);
        }
示例#4
0
        /// <summary>
        /// If a vector then a square matrix is returned if a matrix then a vector of diagonal ements is returned.
        /// </summary>
        /// <returns>Diagonal elements inside a vector or a square matrix with the same diagonal elements.</returns>
        /// <see cref="CommonOps_DDRM.extractDiag(DMatrixRMaj, DMatrixRMaj)"/>
        public SimpleMatrixD diag()
        {
            SimpleMatrixD diag;

            if (MatrixFeatures_DDRM.isVector(mat))
            {
                int N = Math.Max(mat.getNumCols(), mat.getNumRows());
                diag = createMatrix(N, N);
                var dm = diag.getMatrix();
                CommonOps_DDRM.diag(dm, N, mat.data);
            }
            else
            {
                int N = Math.Min(mat.getNumCols(), mat.getNumRows());
                diag = createMatrix(N, 1);
                var dm = diag.getMatrix();
                CommonOps_DDRM.extractDiag(mat, dm);
            }

            return(diag);
        }
示例#5
0
        public static SimpleMatrix <T> diag(Type type, double[] vals)
        {
            T m;

            if (type == typeof(DMatrixRMaj))
            {
                m = CommonOps_DDRM.diag(vals) as T;
            }
            else
            {
                float[] f = new float[vals.Length];
                for (int i = 0; i < f.Length; i++)
                {
                    f[i] = (float)vals[i];
                }
                m = CommonOps_FDRM.diag(f) as T;
            }
            SimpleMatrix <T> ret = wrap(m);

            return(ret);
        }
示例#6
0
        public override void Setup(IEvolutionState state, IParameter paramBase)
        {
            base.Setup(state, paramBase);
            IMersenneTwister random = state.Random[0];

            IParameter def = DefaultBase;

            IParameter subpopBase        = paramBase.Pop();
            IParameter subpopDefaultBase = ECDefaults.ParamBase.Push(Subpopulation.P_SUBPOPULATION);

            if (!state.Parameters.ParameterExists(paramBase.Push(P_SIGMA), def.Push(P_SIGMA)))
            {
                state.Output.Message("CMA-ES sigma was not provided, defaulting to 1.0");
                sigma = 1.0;
            }
            else
            {
                sigma = state.Parameters.GetDouble(paramBase.Push(P_SIGMA), def.Push(P_SIGMA), 0.0);
                if (sigma <= 0)
                {
                    state.Output.Fatal("If CMA-ES sigma is provided, it must be > 0.0", paramBase.Push(P_SIGMA),
                                       def.Push(P_SIGMA));
                }
            }

            double[] cvals = new double[GenomeSize];
            string   covarianceInitialization =
                state.Parameters.GetStringWithDefault(paramBase.Push(P_COVARIANCE), def.Push(P_COVARIANCE), V_IDENTITY);
            string covs = "Initial Covariance: <";

            for (int i = 0; i < GenomeSize; i++)
            {
                if (i > 0)
                {
                    covs += ", ";
                }
                if (covarianceInitialization.Equals(V_SCALED))
                {
                    cvals[i] = (MaxGenes[i] - MinGenes[i]);
                }
                else if (covarianceInitialization.Equals(V_IDENTITY))
                {
                    cvals[i] = 1.0;
                }
                else
                {
                    state.Output.Fatal("Invalid covariance initialization type " + covarianceInitialization,
                                       paramBase.Push(P_COVARIANCE), def.Push(P_COVARIANCE));
                }

                // cvals is standard deviations, so we change them to variances now
                cvals[i] *= cvals[i];
                covs     += cvals[i];
            }
            state.Output.Message(covs + ">");

            // set myself up and define my initial distribution here
            int n = GenomeSize;

            b = SimpleMatrixD.identity(n);
            c = new SimpleMatrixD(CommonOps_DDRM.diag(cvals));

            d        = SimpleMatrixD.identity(n);
            bd       = CommonOps_DDRM.identity(n, n);
            sbd      = CommonOps_DDRM.identity(n, n);
            invsqrtC = SimpleMatrixD.identity(n);


            // Here we do one FIRST round of eigendecomposition, because newIndividual needs
            // a valid version of sbd.  If c is initially the identity matrix (and sigma = 1),
            // then sbd is too, and we're done.  But if c is scaled in any way, we need to compute
            // the proper value of sbd.  Along the way we'll wind up computing b, d, bd, and invsqrtC

            EigenDecomposition <DMatrixRMaj> eig = DecompositionFactory_DDRM.eig(GenomeSize, true, true);

            if (eig.decompose(c.copy().getMatrix()))
            {
                SimpleMatrixD dinv = new SimpleMatrixD(GenomeSize, GenomeSize);
                for (int i = 0; i < GenomeSize; i++)
                {
                    double eigrt = Math.Sqrt(eig.getEigenValue(i).real);
                    d.set(i, i, eigrt);
                    dinv.set(i, i, 1 / eigrt);
                    CommonOps_DDRM.insert(eig.getEigenVector(i), b.getMatrix(), 0, i);
                }

                invsqrtC = b.mult(dinv.mult(b.transpose()));
                CommonOps_DDRM.mult(b.getMatrix(), d.getMatrix(), bd);
            }
            else
            {
                state.Output.Fatal("CMA-ES eigendecomposition failed. ");
            }
            CommonOps_DDRM.scale(sigma, bd, sbd);

            // End FIRST round of eigendecomposition



            // Initialize dynamic (internal) strategy parameters and constants
            pc   = new SimpleMatrixD(n, 1);
            ps   = new SimpleMatrixD(n, 1);                        // evolution paths for C and sigma
            chiN = Math.Sqrt(n) *
                   (1.0 - 1.0 / (4.0 * n) + 1.0 / (21.0 * n * n)); // expectation of ||N(0,I)|| == norm(randn(N,1))

            xmean = new SimpleMatrixD(GenomeSize, 1);

            bool   meanSpecified = false;
            string val           = state.Parameters.GetString(paramBase.Push(P_MEAN), def.Push(P_MEAN));

            if (val != null)
            {
                meanSpecified = true;
                if (val.Equals(V_CENTER))
                {
                    for (int i = 0; i < GenomeSize; i++)
                    {
                        xmean.set(i, 0, (MaxGenes[i] + MinGenes[i]) / 2.0);
                    }
                }
                else if (val.Equals(V_ZERO))
                {
                    for (int i = 0; i < GenomeSize; i++)
                    {
                        xmean.set(i, 0, 0); // it is this anyway
                    }
                }
                else if (val.Equals(V_RANDOM))
                {
                    for (int i = 0; i < GenomeSize; i++)
                    {
                        xmean.set(i, 0,
                                  state.Random[0].NextDouble(true, true) * (MaxGenes[i] - MinGenes[i]) + MinGenes[i]);
                    }
                }
                else
                {
                    state.Output.Fatal("Unknown mean value specified: " + val, paramBase.Push(P_MEAN), def.Push(P_MEAN));
                }
            }
            else
            {
                state.Output.Fatal("No default mean value specified.  Loading full mean from parameters.",
                                   paramBase.Push(P_MEAN), def.Push(P_MEAN));
            }

            bool nonDefaultMeanSpecified = false;

            for (int i = 0; i < GenomeSize; i++)
            {
                double m_i = 0;
                try
                {
                    m_i = state.Parameters.GetDouble(paramBase.Push(P_MEAN).Push("" + i), def.Push(P_MEAN).Push("" + i));
                    xmean.set(i, 0, m_i);
                    nonDefaultMeanSpecified = true;
                }
                catch (FormatException e)
                {
                    if (!meanSpecified)
                    {
                        state.Output.Error(
                            "No default mean value was specified, but CMA-ES mean index " + i +
                            " is missing or not a number.", paramBase.Push(P_MEAN).Push("" + i),
                            def.Push(P_MEAN).Push("" + i));
                    }
                }
            }

            state.Output.ExitIfErrors();
            if (nonDefaultMeanSpecified && meanSpecified)
            {
                state.Output.Warning("A default mean value was specified, but certain mean values were overridden.");
            }

            string mes = "Initial Mean: <";

            for (int i = 0; i < GenomeSize - 1; i++)
            {
                mes = mes + xmean.get(i, 0) + ", ";
            }
            mes = mes + xmean.get(GenomeSize - 1, 0) + ">";
            state.Output.Message(mes);

            if (!state.Parameters.ParameterExists(paramBase.Push(P_LAMBDA), def.Push(P_LAMBDA)))
            {
                lambda = 4 + (int)Math.Floor(3 * Math.Log(n));
            }
            else
            {
                lambda = state.Parameters.GetInt(paramBase.Push(P_LAMBDA), def.Push(P_LAMBDA), 1);
                if (lambda <= 0)
                {
                    state.Output.Fatal("If the CMA-ES lambda parameter is provided, it must be a valid integer > 0",
                                       paramBase.Push(P_LAMBDA), def.Push(P_LAMBDA));
                }
            }

            if (!state.Parameters.ParameterExists(paramBase.Push(P_MU), def.Push(P_MU)))
            {
                mu = (int)(Math.Floor(lambda / 2.0));
            }
            else
            {
                mu = state.Parameters.GetInt(paramBase.Push(P_MU), def.Push(P_MU), 1);
                if (mu <= 0)
                {
                    state.Output.Fatal("If the CMA-ES mu parameter is provided, it must be a valid integer > 0",
                                       paramBase.Push(P_MU), def.Push(P_MU));
                }
            }

            if (mu > lambda) // uh oh
            {
                state.Output.Fatal("CMA-ES mu must be <= lambda.  Presently mu=" + mu + " and lambda=" + lambda);
            }

            weights = new double[mu];
            bool weightsSpecified = false;

            for (int i = 0; i < mu; i++)
            {
                if (state.Parameters.ParameterExists(paramBase.Push(P_WEIGHTS).Push("" + i), def.Push(P_WEIGHTS).Push("" + i)))
                {
                    state.Output.Message("CMA-ES weight index " + i +
                                         " specified.  Loading all weights from parameters.");
                    weightsSpecified = true;
                    break;
                }
            }

            if (weightsSpecified)
            {
                for (int i = 0; i < mu; i++)
                {
                    double m_i = 0;
                    try
                    {
                        weights[i] = state.Parameters.GetDouble(paramBase.Push(P_WEIGHTS).Push("" + i),
                                                                def.Push(P_WEIGHTS).Push("" + i));
                    }
                    catch (FormatException e)
                    {
                        state.Output.Error("CMA-ES weight index " + i + " missing or not a number.",
                                           paramBase.Push(P_WEIGHTS).Push("" + i), def.Push(P_WEIGHTS).Push("" + i));
                    }
                }
                state.Output.ExitIfErrors();
            }
            else
            {
                for (int i = 0; i < mu; i++)
                {
                    weights[i] = Math.Log((lambda + 1.0) / (2.0 * (i + 1)));
                }
            }

            // normalize
            double sum = 0.0;

            for (int i = 0; i < mu; i++)
            {
                sum += weights[i];
            }
            for (int i = 0; i < mu; i++)
            {
                weights[i] /= sum;
            }

            // compute mueff
            double sumSqr = 0.0;

            for (int i = 0; i < mu; i++)
            {
                sumSqr += weights[i] * weights[i];
            }
            mueff = 1.0 / sumSqr;

            mes = "Weights: <";
            for (int i = 0; i < weights.Length - 1; i++)
            {
                mes = mes + weights[i] + ", ";
            }
            mes = mes + (weights.Length - 1) + ">";
            state.Output.Message(mes);

            useAltTermination = state.Parameters.GetBoolean(paramBase.Push(P_ALTERNATIVE_TERMINATION),
                                                            def.Push(P_ALTERNATIVE_TERMINATION), false);
            useAltGenerator = state.Parameters.GetBoolean(paramBase.Push(P_ALTERNATIVE_GENERATOR),
                                                          def.Push(P_ALTERNATIVE_GENERATOR), false);
            altGeneratorTries = state.Parameters.GetIntWithDefault(paramBase.Push(P_ALTERNATIVE_GENERATOR_TRIES),
                                                                   def.Push(P_ALTERNATIVE_GENERATOR_TRIES), DEFAULT_ALT_GENERATOR_TRIES);
            if (altGeneratorTries < 1)
            {
                state.Output.Fatal(
                    "If specified (the default is " + DEFAULT_ALT_GENERATOR_TRIES +
                    "), alt-generation-tries must be >= 1",
                    paramBase.Push(P_ALTERNATIVE_GENERATOR_TRIES), def.Push(P_ALTERNATIVE_GENERATOR_TRIES));
            }

            if (!state.Parameters.ParameterExists(paramBase.Push(P_CC), def.Push(P_CC)))
            {
                cc = (4.0 + mueff / n) / (n + 4.0 + 2.0 * mueff / n); // time constant for cumulation for C
            }
            else
            {
                cc = state.Parameters.GetDoubleWithMax(paramBase.Push(P_CC), def.Push(P_CC), 0.0, 1.0);
                if (cc < 0.0)
                {
                    state.Output.Fatal(
                        "If the CMA-ES cc parameter is provided, it must be a valid number in the range [0,1]",
                        paramBase.Push(P_CC), def.Push(P_CC));
                }
            }

            if (!state.Parameters.ParameterExists(paramBase.Push(P_CS), def.Push(P_CS)))
            {
                cs = (mueff + 2.0) / (n + mueff + 5.0); // t-const for cumulation for sigma control
            }
            else
            {
                cs = state.Parameters.GetDoubleWithMax(paramBase.Push(P_CS), def.Push(P_CS), 0.0, 1.0);
                if (cs < 0.0)
                {
                    state.Output.Fatal(
                        "If the CMA-ES cs parameter is provided, it must be a valid number in the range [0,1]",
                        paramBase.Push(P_CS), def.Push(P_CS));
                }
            }

            if (!state.Parameters.ParameterExists(paramBase.Push(P_C1), def.Push(P_C1)))
            {
                c1 = 2.0 / ((n + 1.3) * (n + 1.3) + mueff); // learning rate for rank-one update of C
            }
            else
            {
                c1 = state.Parameters.GetDouble(paramBase.Push(P_C1), def.Push(P_C1), 0.0);
                if (c1 < 0)
                {
                    state.Output.Fatal("If the CMA-ES c1 parameter is provided, it must be a valid number >= 0.0",
                                       paramBase.Push(P_C1), def.Push(P_C1));
                }
            }

            if (!state.Parameters.ParameterExists(paramBase.Push(P_CMU), def.Push(P_CMU)))
            {
                cmu = Math.Min(1.0 - c1, 2.0 * (mueff - 2.0 + 1.0 / mueff) / ((n + 2.0) * (n + 2.0) + mueff));
            }
            else
            {
                cmu = state.Parameters.GetDouble(paramBase.Push(P_CMU), def.Push(P_CMU), 0.0);
                if (cmu < 0)
                {
                    state.Output.Fatal("If the CMA-ES cmu parameter is provided, it must be a valid number >= 0.0",
                                       paramBase.Push(P_CMU), def.Push(P_CMU));
                }
            }

            if (c1 > (1 - cmu)) // uh oh
            {
                state.Output.Fatal("CMA-ES c1 must be <= 1 - cmu.  You are using c1=" + c1 + " and cmu=" + cmu);
            }
            if (cmu > (1 - c1)) // uh oh
            {
                state.Output.Fatal("CMA-ES cmu must be <= 1 - c1.  You are using cmu=" + cmu + " and c1=" + c1);
            }

            if (!state.Parameters.ParameterExists(paramBase.Push(P_DAMPS), def.Push(P_DAMPS)))
            {
                damps = 1.0 + 2.0 * Math.Max(0.0, Math.Sqrt((mueff - 1.0) / (n + 1.0)) - 1.0) + cs; // damping for sigma
            }
            else
            {
                damps = state.Parameters.GetDouble(paramBase.Push(P_DAMPS), def.Push(P_DAMPS), 0.0);
                if (damps <= 0)
                {
                    state.Output.Fatal("If the CMA-ES damps parameter is provided, it must be a valid number > 0.0",
                                       paramBase.Push(P_DAMPS), def.Push(P_DAMPS));
                }
            }

            double damps_min = 0.5;
            double damps_max = 2.0;

            if (damps > damps_max || damps < damps_min)
            {
                state.Output.Warning("CMA-ES damps ought to be close to 1.  You are using damps = " + damps);
            }

            state.Output.Message("lambda: " + lambda);
            state.Output.Message("mu:     " + mu);
            state.Output.Message("mueff:  " + mueff);
            state.Output.Message("cmu:    " + cmu);
            state.Output.Message("c1:     " + c1);
            state.Output.Message("cc:     " + cc);
            state.Output.Message("cs:     " + cs);
            state.Output.Message("damps:  " + damps);
        }
 public virtual DMatrixRMaj getD(DMatrixRMaj D)
 {
     return(CommonOps_DDRM.diag(D, L.numCols, d));
 }