private static ITransformer BuildTrainEvaluateAndSaveModel(MLContext mlContext) { // STEP 1: Common data loading configuration var textLoader = SentimentAnalysysTextLoaderFactory.CreateTextLoader(mlContext); var trainingDataView = textLoader.Read(TrainDataPath); var testDataView = textLoader.Read(TestDataPath); // STEP 2: Common data process configuration with pipeline data transformations var dataProcessPipeline = mlContext.Transforms.Text.FeaturizeText("Text", "Features"); // STEP 3: Set the training algorithm, then create and config the modelBuilder var modelBuilder = new Common.ModelBuilder <SentimentIssue, SentimentPrediction>(mlContext, dataProcessPipeline); var trainer = mlContext.BinaryClassification.Trainers.FastTree(label: "Label", features: "Features"); modelBuilder.AddTrainer(trainer); // STEP 4: Train the model fitting to the DataSet Console.WriteLine("=============== Training the model ==============="); modelBuilder.Train(trainingDataView); // STEP 5: Evaluate the model and show accuracy stats Console.WriteLine("===== Evaluating Model's accuracy with Test data ====="); var metrics = modelBuilder.EvaluateBinaryClassificationModel(testDataView, "Label", "Score"); Common.ConsoleHelper.PrintBinaryClassificationMetrics(trainer.ToString(), metrics); // STEP 6: Save/persist the trained model to a .ZIP file Console.WriteLine("=============== Saving the model to a file ==============="); modelBuilder.SaveModelAsFile(ModelPath); return(modelBuilder.TrainedModel); }
static void Main(string[] args) { //Create MLContext to be shared across the model creation workflow objects //Set a random seed for repeatable/deterministic results across multiple trainings. var mlContext = new MLContext(); // STEP 1: Common data loading configuration DataLoader dataLoader = new DataLoader(mlContext); var trainingDataView = dataLoader.GetDataView(TrainDataPath); var testDataView = dataLoader.GetDataView(TestDataPath); // STEP 2: Common data process configuration with pipeline data transformations var dataProcessor = new DataProcessor(mlContext); var dataProcessPipeline = dataProcessor.DataProcessPipeline; // (OPTIONAL) Peek data (such as 2 records) in training DataView after applying the ProcessPipeline's transformations into "Features" Common.ConsoleHelper.PeekDataViewInConsole <SentimentIssue>(mlContext, trainingDataView, dataProcessPipeline, 2); //Common.ConsoleHelper.PeekVectorColumnDataInConsole(mlContext, "Features", trainingDataView, dataProcessPipeline, 2); // STEP 3: Set the training algorithm, then create and config the modelBuilder var modelBuilder = new Common.ModelBuilder <SentimentIssue, SentimentPrediction>(mlContext, dataProcessPipeline); var trainer = mlContext.BinaryClassification.Trainers.StochasticDualCoordinateAscent(label: "Label", features: "Features"); //Other way: var trainer = new LinearClassificationTrainer(mlContext, "Features", "Label"); modelBuilder.AddTrainer(trainer); // STEP 4: Train the model fitting to the DataSet Console.WriteLine("=============== Training the model ==============="); modelBuilder.Train(trainingDataView); // STEP 5: Evaluate the model and show accuracy stats Console.WriteLine("===== Evaluating Model's accuracy with Test data ====="); var metrics = modelBuilder.EvaluateBinaryClassificationModel(testDataView, "Label", "Score"); Common.ConsoleHelper.PrintBinaryClassificationMetrics("StochasticDualCoordinateAscent", metrics); // STEP 6: Save/persist the trained model to a .ZIP file Console.WriteLine("=============== Saving the model to a file ==============="); modelBuilder.SaveModelAsFile(ModelPath); // (OPTIONAL) Try/test a single prediction by loding the model from the file, first. SentimentIssue sampleStatement = new SentimentIssue { Text = "This is a very rude movie" }; var modelScorer = new Common.ModelScorer <SentimentIssue, SentimentPrediction>(mlContext); modelScorer.LoadModelFromZipFile(ModelPath); var resultprediction = modelScorer.PredictSingle(sampleStatement); Console.WriteLine($"=============== Single Prediction ==============="); Console.WriteLine($"Text: {sampleStatement.Text} | Prediction: {(Convert.ToBoolean(resultprediction.Prediction) ? "Toxic" : "Nice")} sentiment | Probability: {resultprediction.Probability} "); Console.WriteLine($"=================================================="); // Common.ConsoleHelper.ConsoleWriteHeader("=============== End of training process, hit any key to finish ==============="); Console.ReadKey(); }
public static void CreateTrainAndEvaluateModel(MLContext mlContext) { // STEP 1: Common data loading configuration DataLoader dataLoader = new DataLoader(mlContext); var trainingDataView = dataLoader.GetDataView(TrainDataPath); var testDataView = dataLoader.GetDataView(TestDataPath); // STEP 2: Common data process configuration with pipeline data transformations var dataProcessor = new DataProcessor(mlContext); var dataProcessPipeline = dataProcessor.DataProcessPipeline; // (OPTIONAL) Peek data (such as 2 records) in training DataView after applying the ProcessPipeline's transformations into "Features" Common.ConsoleHelper.PeekDataViewInConsole <TitanicData>(mlContext, trainingDataView, dataProcessPipeline, 2); Common.ConsoleHelper.PeekVectorColumnDataInConsole(mlContext, "Features", trainingDataView, dataProcessPipeline, 2); // STEP 3: Set the training algorithm, then create and config the modelBuilder // FastTreeBinaryClassifier is an algorithm that will be used to train the model. // It has three hyperparameters for tuning decision tree performance. //pipeline.Add(new FastTreeBinaryClassifier());// {NumLeaves = 5, NumTrees = 5, MinDocumentsInLeafs = 2}); var modelBuilder = new Common.ModelBuilder <TitanicData, TitanicPrediction>(mlContext, dataProcessPipeline); var trainer = mlContext.BinaryClassification.Trainers.FastTree(label: "Label", features: "Features", numLeaves: 10, numTrees: 5, minDatapointsInLeafs: 10); modelBuilder.AddTrainer(trainer); // STEP 4: Train the model fitting to the DataSet Console.WriteLine("=============== Training the model ==============="); modelBuilder.Train(trainingDataView); // STEP 5: Evaluate the model and show accuracy stats Console.WriteLine("===== Evaluating Model's accuracy with Test data ====="); var metrics = modelBuilder.EvaluateBinaryClassificationModel(testDataView, "Label", "Score"); Common.ConsoleHelper.PrintBinaryClassificationMetrics(trainer.ToString(), metrics); // STEP 6: Save/persist the trained model to a .ZIP file Console.WriteLine("=============== Saving the model to a file ==============="); modelBuilder.SaveModelAsFile(ModelPath); }
private static ITransformer BuildTrainEvaluateAndSaveModel(MLContext mlContext) { // STEP 1: Common data loading configuration DataLoader dataLoader = new DataLoader(mlContext); var trainingDataView = dataLoader.GetDataView(TrainDataPath); var testDataView = dataLoader.GetDataView(TestDataPath); // STEP 2: Common data process configuration with pipeline data transformations var dataProcessor = new DataProcessor(mlContext); var dataProcessPipeline = dataProcessor.DataProcessPipeline; // (OPTIONAL) Peek data (such as 2 records) in training DataView after applying the ProcessPipeline's transformations into "Features" Common.ConsoleHelper.PeekDataViewInConsole <SentimentIssue>(mlContext, trainingDataView, dataProcessPipeline, 2); //Common.ConsoleHelper.PeekVectorColumnDataInConsole(mlContext, "Features", trainingDataView, dataProcessPipeline, 2); // STEP 3: Set the training algorithm, then create and config the modelBuilder var modelBuilder = new Common.ModelBuilder <SentimentIssue, SentimentPrediction>(mlContext, dataProcessPipeline); var trainer = mlContext.BinaryClassification.Trainers.FastTree(label: "Label", features: "Features"); modelBuilder.AddTrainer(trainer); // STEP 4: Train the model fitting to the DataSet Console.WriteLine("=============== Training the model ==============="); modelBuilder.Train(trainingDataView); // STEP 5: Evaluate the model and show accuracy stats Console.WriteLine("===== Evaluating Model's accuracy with Test data ====="); var metrics = modelBuilder.EvaluateBinaryClassificationModel(testDataView, "Label", "Score"); Common.ConsoleHelper.PrintBinaryClassificationMetrics(trainer.ToString(), metrics); // STEP 6: Save/persist the trained model to a .ZIP file Console.WriteLine("=============== Saving the model to a file ==============="); modelBuilder.SaveModelAsFile(ModelPath); return(modelBuilder.TrainedModel); }