static void Main(string[] args) { List <ILayer <NeuralUnit> > layers = new List <ILayer <NeuralUnit> > { new Input(2), new Dense(2, Activation.Sigmoid), new Dense(2, Activation.Sigmoid), new Dense(1, Activation.Sigmoid) }; CognitiveModel model = new CognitiveModel(layers); model.Compile(); model.Fit((null, null), Cardiff.Fit.Algorithms.BackProp, 100); }
public async Task <ActionResult> Upload(string userid, CognitiveModel request) { CloudStorageAccount storageConnection = CloudStorageAccount.Parse(ConnectionString); CloudBlobClient blobClient = storageConnection.CreateCloudBlobClient(); CloudBlobContainer container = blobClient.GetContainerReference("faceimages"); if (await container.CreateIfNotExistsAsync()) { await container.SetPermissionsAsync(new BlobContainerPermissions { PublicAccess = BlobContainerPublicAccessType.Blob }); } var fileName = Guid.NewGuid().ToString() + ".jpg"; CloudBlockBlob cloudBlockBlob = container.GetBlockBlobReference(string.Format("{0}/{1}", userid, fileName)); cloudBlockBlob.Properties.ContentType = "image/jpg"; await cloudBlockBlob.UploadFromByteArrayAsync(request.ImgData, 0, request.ImgData.Length); var response = new UploadResponse() { FileURL = cloudBlockBlob.Uri.AbsoluteUri, UserId = userid.ToString() }; IFaceClient client = Authenticate(ENDPOINT, SUBSCRIPTION_KEY); var face = await DetectFaceExtract(client, cloudBlockBlob.Uri.AbsoluteUri, RecognitionModel.Recognition02); if (face != null) { response.FaceId = face.FaceId.ToString(); } var json = JsonConvert.SerializeObject(face); response.Response = json; return(Ok(response)); }