public void ClassificationStackingEnsembleModel_Predict_Multiple() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var rows = targets.Length; var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var predictions = sut.Predict(observations); var metric = new TotalErrorClassificationMetric <double>(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.34615384615384615, actual, 0.0000001); }
public void ClassificationStackingEnsembleModel_PredictProbability_single() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var rows = targets.Length; var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var predictions = new ProbabilityPrediction[rows]; for (int i = 0; i < rows; i++) { predictions[i] = sut.PredictProbability(observations.Row(i)); } var metric = new LogLossClassificationProbabilityMetric(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.6696598716465223, actual, 0.0000001); }
public void ClassificationStackingEnsembleLearner_Learn_Indexed() { var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var sut = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var parser = new CsvParser(() => new StringReader(Resources.Glass)); var observations = parser.EnumerateRows(v => v != "Target").ToF64Matrix(); var targets = parser.EnumerateRows("Target").ToF64Vector(); var indices = Enumerable.Range(0, 25).ToArray(); var model = sut.Learn(observations, targets, indices); var predictions = model.Predict(observations); var metric = new TotalErrorClassificationMetric <double>(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.67289719626168221, actual, 0.0001); }
public void ClassificationStackingEnsembleModel_GetRawVariableImportance() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var actual = sut.GetRawVariableImportance(); var expected = new double[] { 0.12545787545787546, 0, 0.16300453932032882, 0.0345479082321188, 0.15036245805476572, 0, 0, 0 }; Assert.AreEqual(expected.Length, actual.Length); for (int i = 0; i < expected.Length; i++) { Assert.AreEqual(expected[i], actual[i], 0.000001); } }
public void ClassificationStackingEnsembleLearner_Learn_Include_Original_Features() { var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var sut = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), true); var parser = new CsvParser(() => new StringReader(Resources.Glass)); var observations = parser.EnumerateRows(v => v != "Target").ToF64Matrix(); var targets = parser.EnumerateRows("Target").ToF64Vector(); var model = sut.Learn(observations, targets); var predictions = model.Predict(observations); var metric = new TotalErrorClassificationMetric <double>(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.26168224299065418, actual, 0.0001); }
public void ClassificationStackingEnsembleModel_PredictProbability_single() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var rows = targets.Length; var predictions = new ProbabilityPrediction[rows]; for (int i = 0; i < rows; i++) { predictions[i] = sut.PredictProbability(observations.Row(i)); } var metric = new LogLossClassificationProbabilityMetric(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.6696598716465223, actual, 0.0000001); }
public void ClassificationStackingEnsembleModel_Predict_Multiple() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var predictions = sut.Predict(observations); var metric = new TotalErrorClassificationMetric <double>(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.34615384615384615, actual, 0.0000001); }
public void ClassificationStackingEnsembleModel_GetRawVariableImportance() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var actual = sut.GetRawVariableImportance(); var expected = new double[] { 0.12545787545787546, 0, 0.16300453932032882, 0.0345479082321188, 0.15036245805476572, 0, 0, 0 }; Assert.AreEqual(expected.Length, actual.Length); for (int i = 0; i < expected.Length; i++) { Assert.AreEqual(expected[i], actual[i], 0.000001); } }
public void ClassificationStackingEnsembleLearner_Learn_Indexed() { var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var sut = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var(observations, targets) = DataSetUtilities.LoadGlassDataSet(); var indices = Enumerable.Range(0, 25).ToArray(); var model = sut.Learn(observations, targets, indices); var predictions = model.Predict(observations); var metric = new TotalErrorClassificationMetric <double>(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.67289719626168221, actual, 0.0001); }
public void ClassificationStackingEnsembleModel_GetVariableImportance() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var featureNameToIndex = new Dictionary <string, int> { { "AptitudeTestScore", 0 }, { "PreviousExperience_month", 1 } }; var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var learner = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), false); var sut = learner.Learn(observations, targets); var actual = sut.GetVariableImportance(featureNameToIndex); WriteImportances(actual); var expected = new Dictionary <string, double> { { "ClassificationDecisionTreeModel_1_Class_Probability_0", 100 }, { "ClassificationDecisionTreeModel_2_Class_Probability_0", 92.2443379072288 }, { "ClassificationDecisionTreeModel_0_Class_Probability_0", 76.9658783620323 }, { "ClassificationDecisionTreeModel_1_Class_Probability_1", 21.1944454897829 }, { "ClassificationDecisionTreeModel_0_Class_Probability_1", 0 }, { "ClassificationDecisionTreeModel_2_Class_Probability_1", 0 }, { "ClassificationDecisionTreeModel_3_Class_Probability_0", 0 }, { "ClassificationDecisionTreeModel_3_Class_Probability_1", 0 } }; Assert.AreEqual(expected.Count, actual.Count); var zip = expected.Zip(actual, (e, a) => new { Expected = e, Actual = a }); foreach (var item in zip) { Assert.AreEqual(item.Expected.Key, item.Actual.Key); Assert.AreEqual(item.Expected.Value, item.Actual.Value, 0.000001); } }
public void ClassificationStackingEnsembleLearner_Learn_Include_Original_Features() { var learners = new IIndexedLearner <ProbabilityPrediction>[] { new ClassificationDecisionTreeLearner(2), new ClassificationDecisionTreeLearner(5), new ClassificationDecisionTreeLearner(7), new ClassificationDecisionTreeLearner(9) }; var sut = new ClassificationStackingEnsembleLearner(learners, new ClassificationDecisionTreeLearner(9), new RandomCrossValidation <ProbabilityPrediction>(5, 23), true); var(observations, targets) = DataSetUtilities.LoadGlassDataSet(); var model = sut.Learn(observations, targets); var predictions = model.Predict(observations); var metric = new TotalErrorClassificationMetric <double>(); var actual = metric.Error(targets, predictions); Assert.AreEqual(0.26168224299065418, actual, 0.0001); }