示例#1
0
        // add statistics here?

        // calculate avg, max, min, variation, std,  for

        // should we also calculate stats for each class???

        /// <summary>
        /// Calculate average over all classes and datasets
        /// </summary>
        public virtual void calculateStatistics()
        {
            average = new ClassificationMetrics.Stats();
            // ClassificationMetrics.Stats max = new ClassificationMetrics.Stats();

            double count = 0;

            List <string> classLabels = new List <string>();

            // avg max min variation std
            foreach (EvaluationResult er in results)
            {
                ClassificationMetrics[] ccm = er.ClassificationMetricses;
                foreach (ClassificationMetrics cm in ccm)
                {
                    average.accuracy  += cm.Accuracy;
                    average.precision += cm.Precision;
                    average.recall    += cm.Recall;
                    average.fScore    += cm.FMeasure;
                    average.mserror   += er.MeanSquareError;

                    if (!classLabels.Contains(cm.ClassLabel))
                    {
                        classLabels.Add(cm.ClassLabel);
                    }
                }
                count++;
            }
            count             = count * classLabels.Count; // * classes count
            average.accuracy  = average.accuracy / count;
            average.precision = average.precision / count;
            average.recall    = average.recall / count;
            average.fScore    = average.fScore / count;
            average.mserror   = average.mserror / count;
        }
示例#2
0
        public static void Main(string[] args)
        {
            Evaluation evaluation = new Evaluation();

            evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError()));

            string[] classNames = new string[] { "Virginica", "Setosa", "Versicolor" };


            MultiLayerPerceptron neuralNet = (MultiLayerPerceptron)NeuralNetwork.createFromFile("irisNet.nnet");
            DataSet dataSet = DataSet.createFromFile("data_sets/iris_data_normalised.txt", 4, 3, ",");

            evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classNames));
            evaluation.evaluateDataSet(neuralNet, dataSet);

            ClassifierEvaluator evaluator       = evaluation.getEvaluator(typeof(ClassifierEvaluator.MultiClass));
            ConfusionMatrix     confusionMatrix = evaluator.Result;

            Console.WriteLine("Confusion matrrix:\r\n");
            Console.WriteLine(confusionMatrix.ToString() + "\r\n\r\n");
            Console.WriteLine("Classification metrics\r\n");
            ClassificationMetrics[]     metrics = ClassificationMetrics.createFromMatrix(confusionMatrix);
            ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics);
            foreach (ClassificationMetrics cm in metrics)
            {
                Console.WriteLine(cm.ToString() + "\r\n");
            }
            Console.WriteLine(average.ToString());
        }