public void EmbedIDRandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(2, 30); int outputCount = Mother.Dice.Next(1, 30); int batchCount = Mother.Dice.Next(1, 5); int[,] input = (int[, ])Enumerable.Repeat(0, batchCount * inputCount).ToNdArray(batchCount, inputCount); input[0, 0] = 1; Real[,,] dummyGy = (Real[, , ])Initializer.GetRealNdArray(new[] { batchCount, inputCount, outputCount }); Real[,] w = (Real[, ])Initializer.GetRealNdArray(new[] { inputCount, outputCount }); //Chainer NChainer.EmbedID <Real> cEmbedId = new NChainer.EmbedID <Real>(inputCount, outputCount, Real.ToBaseNdArray(w)); Variable <int> cX = new Variable <int>(input); Variable <Real> cY = cEmbedId.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.EmbedID embedId = new KelpNet.EmbedID(inputCount, outputCount, w); NdArray x = new NdArray(Real.ToRealArray(input), new[] { inputCount }, batchCount); NdArray y = embedId.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[, , ])cY.Data); Real[] cWgrad = Real.ToRealArray((Real[, ])cEmbedId.W.Grad); //許容範囲を算出 double delta = 0.00001; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //W.grad Assert.AreEqual(cWgrad.Length, embedId.Weight.Grad.Length); for (int i = 0; i < embedId.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad[i], embedId.Weight.Grad[i], delta); } }
public void EmbedIDRandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(2, 30); int outputCount = Mother.Dice.Next(1, 30); int batchCount = Mother.Dice.Next(1, 5); int[,] input = (int[, ])Enumerable.Repeat(0, batchCount * inputCount).ToNdArray(batchCount, inputCount); input[0, 0] = 1; Real[,,] dummyGy = Initializer.GetRandomValues <Real[, , ]>(batchCount, inputCount, outputCount); Real[,] w = Initializer.GetRandomValues <Real[, ]>(inputCount, outputCount); //Chainer NChainer.EmbedID <Real> cEmbedId = new NChainer.EmbedID <Real>(inputCount, outputCount, w); Variable <int> cX = new Variable <int>(input); Variable <Real> cY = cEmbedId.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //KelpNet EmbedID <Real> embedId = new EmbedID <Real>(inputCount, outputCount, w); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = embedId.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, , ])cY.Data).Flatten(); Real[] cWgrad = ((Real[, ])cEmbedId.W.Grad).Flatten(); //許容範囲を算出 Real delta = 0.00001f; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //W.grad Assert.AreEqual(cWgrad.Length, embedId.Weight.Grad.Length); for (int i = 0; i < embedId.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad[i], embedId.Weight.Grad[i], delta); } }
public void SoftmaxCrossEntropyRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int channel = Mother.Dice.Next(2, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] inputA = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, channel, height, width }); int[,,] inputB = (int[, , ])Enumerable.Repeat(0, batchCount * height * width).ToNdArray(batchCount, height, width); for (int b = 0; b < batchCount; b++) { inputB[b, Mother.Dice.Next(height), Mother.Dice.Next(width)] = 1; } //chainer NChainer.SoftmaxCrossEntropy <Real> cSoftmaxCrossEntropy = new NChainer.SoftmaxCrossEntropy <Real>(); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(inputA)); Variable <int> cY = new Variable <int>(inputB); Variable <Real> cZ = cSoftmaxCrossEntropy.Forward(cX, cY); cZ.Backward(); Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad); //KelpNet KelpNet.SoftmaxCrossEntropy softmaxCrossEntropy = new KelpNet.SoftmaxCrossEntropy(); NdArray x = new NdArray(Real.ToRealArray(inputA), new[] { channel, height, width }, batchCount); NdArray y = new NdArray(Real.ToRealArray(inputB), new[] { height, width }, batchCount); //KelpNetはBackwaward側のみEvaluateで実行される NdArray z = softmaxCrossEntropy.Evaluate(x, y); //許容範囲を算出(内部の割引順が違うため誤差が大きい) double delta = 0.00001; //Loss Assert.AreEqual(cZ.Data[0], z.Data[0], delta); //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void ConcatRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int widthA = Mother.Dice.Next(1, 16); int widthB = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); int axis = 3; Real[,,,] inputA = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, widthA); Real[,,,] inputB = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, widthB); Real[,,,] dummyGy = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, widthA + widthB); //chainer NChainer.Concat <Real> cConcat = new NChainer.Concat <Real>(axis); Variable <Real> cX = new Variable <Real>(inputA); Variable <Real> cY = new Variable <Real>(inputB); Variable <Real> cZ = cConcat.Forward(cX, cY); cZ.Grad = dummyGy; cZ.Backward(); //KelpNet Concat <Real> concat = new Concat <Real>(axis - 1);//Chainerと異なり1次元目を暗黙的にBatchとみなさないため NdArray <Real> x = new NdArray <Real>(inputA, asBatch: true); NdArray <Real> y = new NdArray <Real>(inputB, asBatch: true); NdArray <Real> z = concat.Forward(x, y)[0]; z.Grad = dummyGy.Flatten(); z.Backward(); Real[] cZdata = ((Real[, , , ])cZ.Data).Flatten(); //Copyが必要 Real[] cXgrad = ((Real[, , , ])cX.Grad.Copy()).Flatten(); Real[] cYgrad = ((Real[, , , ])cY.Grad.Copy()).Flatten(); //許容範囲を算出 Real delta = 0.00001f; //z Assert.AreEqual(cZdata.Length, z.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cZdata[i], z.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //y.grad Assert.AreEqual(cYgrad.Length, y.Grad.Length); for (int i = 0; i < y.Grad.Length; i++) { Assert.AreEqual(cYgrad[i], y.Grad[i], delta); } }
public void LSTMRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int inputCount = Mother.Dice.Next(1, 5); int outputCount = Mother.Dice.Next(1, 5); Real[,] input = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, inputCount }); Real[,] dummyGy = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, outputCount }); Real[,] upwardInit = (Real[, ])Initializer.GetRealNdArray(new[] { outputCount, inputCount }); Real[,] lateralInit = (Real[, ])Initializer.GetRealNdArray(new[] { outputCount, outputCount }); Real[,,] biasInit = (Real[, , ])Initializer.GetRealNdArray(new[] { 1, outputCount, 1 }); Real[,,] forgetBiasInit = (Real[, , ])Initializer.GetRealNdArray(new[] { 1, outputCount, 1 }); //Chainer NChainer.LSTM <Real> clstm = new NChainer.LSTM <Real>(inputCount, outputCount, Real.ToBaseNdArray(lateralInit), Real.ToBaseNdArray(upwardInit), Real.ToBaseNdArray(biasInit), Real.ToBaseNdArray(forgetBiasInit)); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = clstm.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.LSTM lstm = new KelpNet.LSTM(inputCount, outputCount, lateralInit, upwardInit, biasInit, forgetBiasInit); NdArray x = new NdArray(Real.ToRealArray(input), new[] { inputCount }, batchCount); NdArray y = lstm.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); //許容範囲を算出 double delta = 0.00001; Real[] cYdata = Real.ToRealArray((Real[, ])cY.Data); Real[] cXgrad = Real.ToRealArray((Real[, ])cX.Grad); Real[] cupwardWGrad = Real.ToRealArray((Real[, ])clstm.upward.W.Grad); Real[] cupwardbGrad = (Real[])clstm.upward.b.Grad; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < cYdata.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < cXgrad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //W.grad int wLen = lstm.upward.Weight.Grad.Length; Assert.AreEqual(cupwardWGrad.Length, lstm.upward.Weight.Grad.Length); for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad int bLen = lstm.upward.Bias.Length; Assert.AreEqual(cupwardbGrad.Length, lstm.upward.Bias.Grad.Length); for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } ////////////////////////////////////////////////////////////////////////////////////////// // 1度目はlateralに値はない // ////////////////////////////////////////////////////////////////////////////////////////// //Real[] clateralWGrad = Real.ToRealArray((Real[,])clstm.lateral.W.Grad); //Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); //for (int i = 0; i < wLen; i++) //{ // Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); //} ////////////////////////////////////////////////////////////////////////////////////////// /////////// //2周目 // /////////// Real[,] input2 = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, inputCount }); Real[,] dummyGy2 = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, outputCount }); //Chainer Variable <Real> cX2 = new Variable <Real>(Real.ToBaseNdArray(input2)); Variable <Real> cY2 = clstm.Forward(cX2); cY2.Grad = Real.ToBaseNdArray(dummyGy2); cY2.Backward(); //KelpNet NdArray x2 = new NdArray(Real.ToRealArray(input2), new[] { inputCount }, batchCount); NdArray y2 = lstm.Forward(x2)[0]; y2.Grad = Real.ToRealArray(dummyGy2); y2.Backward(); Real[] cYdata2 = Real.ToRealArray((Real[, ])cY2.Data); Real[] cXgrad2 = Real.ToRealArray((Real[, ])cX2.Grad); Real[] cupwardWGrad2 = Real.ToRealArray((Real[, ])clstm.upward.W.Grad); Real[] cupwardbGrad2 = (Real[])clstm.upward.b.Grad; Real[] clateralWGrad = Real.ToRealArray((Real[, ])clstm.lateral.W.Grad); //y Assert.AreEqual(cYdata2.Length, y2.Data.Length); for (int i = 0; i < cYdata2.Length; i++) { Assert.AreEqual(cYdata2[i], y2.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad2.Length, x2.Grad.Length); for (int i = 0; i < cXgrad2.Length; i++) { Assert.AreEqual(cXgrad2[i], x2.Grad[i], delta); } //W.grad Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); for (int i = 0; i < clateralWGrad.Length; i++) { Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); } //経由が多いため誤差が大きい delta = 1.0; for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad2[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad2[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } }
public void AdamRandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(2, 50); int outputCount = Mother.Dice.Next(2, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = (Real[,])Initializer.GetRealNdArray(new[] { batchCount, inputCount }); Real[,] dummyGy = (Real[,])Initializer.GetRealNdArray(new[] { batchCount, outputCount }); Real[,] w = (Real[,])Initializer.GetRealNdArray(new[] { outputCount, inputCount }); Real[] b = Initializer.GetRealArray(outputCount); float alpha = (float)Mother.Dice.NextDouble(); //0.001f float beta1 = (float)Mother.Dice.NextDouble(); //0.9f; float beta2 = (float)Mother.Dice.NextDouble(); //0.999f; float eps = (float)Mother.Dice.NextDouble(); //1e-08f; float eta = (float)Mother.Dice.NextDouble(); //1.0f; //Chainer NChainer.Linear<Real> cLinear = new NChainer.Linear<Real>(inputCount, outputCount, false, Real.ToBaseNdArray(w), Real.ToBaseArray(b)); NChainer.Adam<Real> cAdam = new NChainer.Adam<Real>(alpha, beta1, beta2, eps, eta); cAdam.Setup(cLinear); Variable<Real> cX = new Variable<Real>(Real.ToBaseNdArray(input)); Variable<Real> cY = cLinear.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); cAdam.Update(); //KelpNet KelpNet.CL.Linear linear = new KelpNet.CL.Linear(inputCount, outputCount, false, w, b); KelpNet.Adam adam = new Adam(alpha, beta1, beta2, eps, eta); adam.SetUp(linear); NdArray x = new NdArray(Real.ToRealArray(input), new[] { inputCount }, batchCount); NdArray y = linear.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); adam.Update(); Real[] cW = Real.ToRealArray((Real[,])cLinear.W.Data); Real[] cb = (Real[])cLinear.b.Data; //許容範囲を算出 double delta = 0.00001; //W.grad Assert.AreEqual(cW.Length, linear.Weight.Data.Length); for (int i = 0; i < linear.Weight.Data.Length; i++) { Assert.AreEqual(cW[i], linear.Weight.Data[i], delta); } //b.grad Assert.AreEqual(cb.Length, linear.Bias.Data.Length); for (int i = 0; i < linear.Bias.Data.Length; i++) { Assert.AreEqual(cb[i], linear.Bias.Data[i], delta); } }
public void RandomTest(bool gpuEnable) { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int inChCount = Mother.Dice.Next(1, 5); int outChCount = Mother.Dice.Next(1, 5); int wideSize = Mother.Dice.Next(8, 32); int heightSize = Mother.Dice.Next(8, 32); int kWidth = Mother.Dice.Next(1, 5); int kHeight = Mother.Dice.Next(1, 5); int strideX = Mother.Dice.Next(1, 5); int strideY = Mother.Dice.Next(1, 5); int padX = Mother.Dice.Next(0, 5); int padY = Mother.Dice.Next(0, 5); int outputHeight = (int)Math.Floor((heightSize - kHeight + padY * 2.0) / strideY) + 1; int outputWidth = (int)Math.Floor((wideSize - kWidth + padX * 2.0) / strideX) + 1; Real[,,,] input = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, inChCount, heightSize, wideSize }); Real[,,,] dummyGy = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, outChCount, outputHeight, outputWidth }); Real[,,,] w = (Real[, , , ])Initializer.GetRealNdArray(new[] { outChCount, inChCount, kHeight, kWidth }); Real[] b = Initializer.GetRealArray(outChCount); //Chainer NChainer.Convolution2D <Real> cConvolotion2D = new NChainer.Convolution2D <Real>( inChCount, outChCount, new[] { kHeight, kWidth }, new[] { strideY, strideX }, new[] { padY, padX }, false, Real.ToBaseNdArray(w), Real.ToBaseArray(b)); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = cConvolotion2D.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.CL.Convolution2D convolution2D = new KelpNet.CL.Convolution2D( inChCount, outChCount, new[] { kWidth, kHeight }, new[] { strideX, strideY }, new[] { padX, padY }, false, w, b, gpuEnable: gpuEnable); NdArray x = new NdArray(Real.ToRealArray(input), new[] { inChCount, heightSize, wideSize }, batchCount); NdArray y = convolution2D.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[, , , ])cY.Data.Copy()); Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad.Copy()); Real[] cWgrad = Real.ToRealArray((Real[, , , ])cConvolotion2D.W.Grad); Real[] cbgrad = (Real[])cConvolotion2D.b.Grad; //許容範囲を算出 double delta = 0.00001; Assert.AreEqual(cYdata.Length, y.Data.Length); Assert.AreEqual(cXgrad.Length, x.Grad.Length); Assert.AreEqual(cWgrad.Length, convolution2D.Weight.Grad.Length); Assert.AreEqual(cbgrad.Length, convolution2D.Bias.Grad.Length); //y for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } delta = 0.1; //W.grad for (int i = 0; i < convolution2D.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad[i], convolution2D.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < convolution2D.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad[i], convolution2D.Bias.Grad[i], delta); } }
public void RandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = 1 + Mother.Dice.Next() % 49; int outputCount = 1 + Mother.Dice.Next() % 49; Real[,] input = (Real[, ])Initializer.GetRealNdArray(new[] { 1, inputCount }); Real[,] dummyGy = (Real[, ])Initializer.GetRealNdArray(new[] { 1, outputCount }); Real[,] w = (Real[, ])Initializer.GetRealNdArray(new[] { outputCount, inputCount }); Real[] b = Initializer.GetRealArray(outputCount); //Chainer NChainer.Linear <Real> cLinear = new NChainer.Linear <Real>(inputCount, outputCount, false, Real.ToBaseNdArray(w), Real.ToBaseArray(b)); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = cLinear.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.Linear linear = new KelpNet.Linear(inputCount, outputCount, false, w, b); NdArray x = new NdArray(input); NdArray y = linear.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[, ])cY.Data); Real[] cXgrad = Real.ToRealArray((Real[, ])cX.Grad); Real[] cWgrad = Real.ToRealArray((Real[, ])cLinear.W.Grad); Real[] cbgrad = (Real[])cLinear.b.Grad; //許容範囲を算出 double delta = 0.00001; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //W.grad Assert.AreEqual(cWgrad.Length, linear.Weight.Grad.Length); for (int i = 0; i < linear.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad[i], linear.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad.Length, linear.Bias.Grad.Length); for (int i = 0; i < linear.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad[i], linear.Bias.Grad[i], delta); } }
public void SwishRandomTest() { Python.Initialize(); Chainer.Initialize(); int ioCount = Mother.Dice.Next(1, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = (Real[,])Initializer.GetRealNdArray(new[] { batchCount, ioCount }); Real[,] dummyGy = (Real[,])Initializer.GetRealNdArray(new[] { batchCount, ioCount }); Real beta = Mother.Dice.NextDouble(); //Chainer NChainer.Swish<Real> cSwish = new NChainer.Swish<Real>(new[] { ioCount }, beta); Variable<Real> cX = new Variable<Real>(Real.ToBaseNdArray(input)); Variable<Real> cY = cSwish.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.Swish swish = new KelpNet.Swish(new[] { ioCount }, beta); NdArray x = new NdArray(Real.ToRealArray(input), new[] { ioCount }, batchCount); NdArray y = swish.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[,])cY.Data); Real[] cXgrad = Real.ToRealArray((Real[,])cX.Grad); Real[] cbgrad = (Real[])cSwish.beta.Grad; //許容範囲を算出 double delta = 0.00001; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad.Length, swish.Beta.Grad.Length); for (int i = 0; i < swish.Beta.Grad.Length; i++) { Assert.AreEqual(cbgrad[i], swish.Beta.Grad[i], delta); } }
public void LSTMRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int inputCount = Mother.Dice.Next(1, 5); int outputCount = Mother.Dice.Next(1, 5); Real[,] input = Initializer.GetRandomValues <Real[, ]>(batchCount, inputCount); Real[,] dummyGy = Initializer.GetRandomValues <Real[, ]>(batchCount, outputCount); Real[,] upwardInit = Initializer.GetRandomValues <Real[, ]>(outputCount, inputCount); Real[,] lateralInit = Initializer.GetRandomValues <Real[, ]>(outputCount, outputCount); Real[,,] biasInit = Initializer.GetRandomValues <Real[, , ]>(1, outputCount, 1); Real[,,] forgetBiasInit = Initializer.GetRandomValues <Real[, , ]>(1, outputCount, 1); //Chainer NChainer.LSTM <Real> clstm = new NChainer.LSTM <Real>(inputCount, outputCount, lateralInit, upwardInit, biasInit, forgetBiasInit); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = clstm.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //KelpNet LSTM <Real> lstm = new LSTM <Real>(inputCount, outputCount, lateralInit, upwardInit, biasInit, forgetBiasInit); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = lstm.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); //許容範囲を算出 Real delta = 0.00001f; Real[] cYdata = ((Real[, ])cY.Data).Flatten(); Real[] cXgrad = ((Real[, ])cX.Grad).Flatten(); Real[] cupwardWGrad = ((Real[, ])clstm.upward.W.Grad).Flatten(); Real[] cupwardbGrad = (Real[])clstm.upward.b.Grad; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < cYdata.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < cXgrad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //W.grad int wLen = lstm.upward.Weight.Grad.Length; Assert.AreEqual(cupwardWGrad.Length, lstm.upward.Weight.Grad.Length); for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad int bLen = lstm.upward.Bias.Length; Assert.AreEqual(cupwardbGrad.Length, lstm.upward.Bias.Grad.Length); for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } ////////////////////////////////////////////////////////////////////////////////////////// // 1度目はlateralに値はない // ////////////////////////////////////////////////////////////////////////////////////////// //Real[] clateralWGrad = Real.ToRealArray((Real[,])clstm.lateral.W.Grad); //Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); //for (int i = 0; i < wLen; i++) //{ // Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); //} ////////////////////////////////////////////////////////////////////////////////////////// /////////// //2周目 // /////////// Real[,] input2 = Initializer.GetRandomValues <Real[, ]>(batchCount, inputCount); Real[,] dummyGy2 = Initializer.GetRandomValues <Real[, ]>(batchCount, outputCount); //Chainer Variable <Real> cX2 = new Variable <Real>(input2); Variable <Real> cY2 = clstm.Forward(cX2); cY2.Grad = dummyGy2; cY2.Backward(); //KelpNet NdArray <Real> x2 = new NdArray <Real>(input2, asBatch: true); NdArray <Real> y2 = lstm.Forward(x2)[0]; y2.Grad = dummyGy2.Flatten(); y2.Backward(); Real[] cYdata2 = ((Real[, ])cY2.Data).Flatten(); Real[] cXgrad2 = ((Real[, ])cX2.Grad).Flatten(); Real[] cupwardWGrad2 = ((Real[, ])clstm.upward.W.Grad).Flatten(); Real[] cupwardbGrad2 = (Real[])clstm.upward.b.Grad; Real[] clateralWGrad = ((Real[, ])clstm.lateral.W.Grad).Flatten(); //y Assert.AreEqual(cYdata2.Length, y2.Data.Length); for (int i = 0; i < cYdata2.Length; i++) { Assert.AreEqual(cYdata2[i], y2.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad2.Length, x2.Grad.Length); for (int i = 0; i < cXgrad2.Length; i++) { Assert.AreEqual(cXgrad2[i], x2.Grad[i], delta); } //W.grad Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); for (int i = 0; i < clateralWGrad.Length; i++) { Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); } //経由が多いため誤差が大きい delta = 1.0f; for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad2[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad2[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } }
public void BasicMathRandomTest() { Python.Initialize(); Chainer.Initialize(); //Make random value. Real[] val = { 1 + Mother.Dice.Next() }; //Chainer Variable <Real> cX = new Variable <Real>(val); //Add Variable <Real> cAdd = 2 + cX + cX + 2; cAdd.Backward(); Real[] pyGadd = (Real[])cX.Grad; //Mul Variable <Real> cMul = 2 * cX * cX * 3; cMul.Backward(); Real[] pyGmul = (Real[])cX.Grad; //Sub Variable <Real> cSub = 30 - cX - cX - 2; cSub.Backward(); Real[] pyGsub = (Real[])cX.Grad; //Div Variable <Real> cDiv = 50 / cX / cX / 2; cDiv.Backward(); Real[] pyGdiv = (Real[])cX.Grad; //KelpNet NdArray <Real> x = new NdArray <Real>(val); //Add NdArray <Real> add = 2 + x + x + 2; add.Backward(); Real[] gadd = x.Grad.ToArray(); //このToArrayはコピーのため //mul NdArray <Real> mul = 2 * x * x * 3; mul.Backward(); Real[] gmul = x.Grad.ToArray(); //sub NdArray <Real> sub = 30 - x - x - 2; sub.Backward(); Real[] gsub = x.Grad.ToArray(); //mul NdArray <Real> div = 50 / x / x / 2; div.Backward(); Real[] gdiv = x.Grad.ToArray(); //Check CollectionAssert.AreEqual(pyGadd, gadd); CollectionAssert.AreEqual(pyGmul, gmul); CollectionAssert.AreEqual(pyGsub, gsub); CollectionAssert.AreEqual(pyGdiv, gdiv); }
public void RnnLSTMRandomTest() { Python.Initialize(); Chainer.Initialize(); Real[,] input = { { 1.0 }, { 3.0 }, { 5.0 }, { 7.0 }, { 9.0 } }; Real[,] teach = { { 3.0 }, { 5.0 }, { 7.0 }, { 9.0 }, { 11.0 } }; Real[,] input2 = { { 3.0 }, { 5.0 }, { 7.0 }, { 9.0 }, { 11.0 } }; Real[,] teach2 = { { 5.0 }, { 7.0 }, { 9.0 }, { 11.0 }, { 13.0 } }; int outputCount = 1; int inputCount = 1; int hiddenCount = 2; Real[,] upwardInit = (Real[, ])Initializer.GetRealNdArray(new[] { hiddenCount, hiddenCount }); Real[,] lateralInit = (Real[, ])Initializer.GetRealNdArray(new[] { hiddenCount, hiddenCount }); Real[,,] biasInit = (Real[, , ])Initializer.GetRealNdArray(new[] { 1, hiddenCount, 1 }); Real[,,] forgetBiasInit = (Real[, , ])Initializer.GetRealNdArray(new[] { 1, hiddenCount, 1 }); //Chainer Real[,] w1 = (Real[, ])Initializer.GetRealNdArray(new[] { hiddenCount, inputCount }); Real[] b1 = Initializer.GetRealArray(hiddenCount); //Chainer NChainer.Linear <Real> cLinear1 = new NChainer.Linear <Real>(inputCount, hiddenCount, false, Real.ToBaseNdArray(w1), Real.ToBaseArray(b1)); NChainer.LSTM <Real> cLstm = new NChainer.LSTM <Real>(hiddenCount, hiddenCount, Real.ToBaseNdArray(lateralInit), Real.ToBaseNdArray(upwardInit), Real.ToBaseNdArray(biasInit), Real.ToBaseNdArray(forgetBiasInit)); Real[,] w2 = (Real[, ])Initializer.GetRealNdArray(new[] { outputCount, hiddenCount }); Real[] b2 = Initializer.GetRealArray(outputCount); NChainer.Linear <Real> cLinear2 = new NChainer.Linear <Real>(hiddenCount, outputCount, false, Real.ToBaseNdArray(w2), Real.ToBaseArray(b2)); Variable <Real> cX1 = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY11 = cLinear1.Forward(cX1); Variable <Real> cY12 = cLstm.Forward(cY11); Variable <Real> cY13 = cLinear2.Forward(cY12); Variable <Real> cT = new Variable <Real>(Real.ToBaseNdArray(teach)); Variable <Real> cLoss = new NChainer.MeanSquaredError <Real>().Forward(cY13, cT); cLoss.Backward(); //KelpNet KelpNet.CL.Linear linear1 = new KelpNet.CL.Linear(inputCount, hiddenCount, false, w1, b1); KelpNet.LSTM lstm = new KelpNet.LSTM(hiddenCount, hiddenCount, lateralInit, upwardInit, biasInit, forgetBiasInit); KelpNet.CL.Linear linear2 = new KelpNet.CL.Linear(hiddenCount, outputCount, false, w2, b2); NdArray x1 = new NdArray(Real.ToRealArray(input), new[] { 1 }, 5); NdArray y11 = linear1.Forward(x1)[0]; NdArray y12 = lstm.Forward(y11)[0]; NdArray y13 = linear2.Forward(y12)[0]; NdArray t = new NdArray(Real.ToRealArray(teach), new[] { 1 }, 5); NdArray loss = new KelpNet.MeanSquaredError().Evaluate(y13, t); y13.Backward(); Real[] cY11data = Real.ToRealArray((Real[, ])cY11.Data); Real[] cY12data = Real.ToRealArray((Real[, ])cY12.Data); Real[] cY13data = Real.ToRealArray((Real[, ])cY13.Data); Real[] cXgrad = Real.ToRealArray((Real[, ])cX1.Grad); Real[] cupwardWGrad = Real.ToRealArray((Real[, ])cLstm.upward.W.Grad); Real[] cupwardbGrad = (Real[])cLstm.upward.b.Grad; //許容範囲を設定 double delta = 0.00001; //y11 Assert.AreEqual(cY11data.Length, y11.Data.Length); for (int i = 0; i < cY11data.Length; i++) { Assert.AreEqual(cY11data[i], y11.Data[i], delta); } //y12 Assert.AreEqual(cY12data.Length, y12.Data.Length); for (int i = 0; i < cY12data.Length; i++) { Assert.AreEqual(cY12data[i], y12.Data[i], delta); } //y13 Assert.AreEqual(cY13data.Length, y13.Data.Length); for (int i = 0; i < cY13data.Length; i++) { Assert.AreEqual(cY13data[i], y13.Data[i], delta); } //許容範囲を設定 delta = 0.0001; //loss Assert.AreEqual(cLoss.Data[0], loss.Data[0], delta); //x.Grad Assert.AreEqual(cXgrad.Length, x1.Grad.Length); for (int i = 0; i < cXgrad.Length; i++) { Assert.AreEqual(cXgrad[i], x1.Grad[i], delta); } Real[] cWgrad11 = Real.ToRealArray((Real[, ])cLinear1.W.Grad); Real[] cbgrad11 = (Real[])cLinear1.b.Grad; //W.grad Assert.AreEqual(cWgrad11.Length, linear1.Weight.Grad.Length); for (int i = 0; i < linear1.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad11[i], linear1.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad11.Length, linear1.Bias.Grad.Length); for (int i = 0; i < linear1.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad11[i], linear1.Bias.Grad[i], delta); } Real[] cWgrad12 = Real.ToRealArray((Real[, ])cLinear2.W.Grad); Real[] cbgrad12 = (Real[])cLinear2.b.Grad; //W.grad Assert.AreEqual(cWgrad12.Length, linear2.Weight.Grad.Length); for (int i = 0; i < linear2.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad12[i], linear2.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad12.Length, linear2.Bias.Grad.Length); for (int i = 0; i < linear2.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad12[i], linear2.Bias.Grad[i], delta); } //W.grad int wLen = lstm.upward.Weight.Grad.Length; Assert.AreEqual(cupwardWGrad.Length, lstm.upward.Weight.Grad.Length); for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad int bLen = lstm.upward.Bias.Length; Assert.AreEqual(cupwardbGrad.Length, lstm.upward.Bias.Grad.Length); for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } //2周目 Variable <Real> cX2 = new Variable <Real>(Real.ToBaseNdArray(input2)); Variable <Real> cY21 = cLinear1.Forward(cX2); Variable <Real> cY22 = cLstm.Forward(cY21); Variable <Real> cY23 = cLinear2.Forward(cY22); Variable <Real> cT2 = new Variable <Real>(Real.ToBaseNdArray(teach2)); Variable <Real> cLoss2 = new NChainer.MeanSquaredError <Real>().Forward(cY23, cT2); //KelpNet NdArray x2 = new NdArray(Real.ToRealArray(input2), new[] { 1 }, 5); NdArray y21 = linear1.Forward(x2)[0]; NdArray y22 = lstm.Forward(y21)[0]; NdArray y23 = linear2.Forward(y22)[0]; NdArray t2 = new NdArray(Real.ToRealArray(teach2), new[] { 1 }, 5); NdArray loss2 = new KelpNet.MeanSquaredError().Evaluate(y23, t2); Assert.AreEqual(cLoss2.Data[0], loss2.Data[0], delta); //Backwardを実行 cLoss2.Backward(); y23.Backward(); Real[] cYdata21 = Real.ToRealArray((Real[, ])cY21.Data); Real[] cYdata22 = Real.ToRealArray((Real[, ])cY22.Data); Real[] cYdata23 = Real.ToRealArray((Real[, ])cY23.Data); Real[] cXgrad2 = Real.ToRealArray((Real[, ])cX2.Grad); Real[] cupwardWGrad2 = Real.ToRealArray((Real[, ])cLstm.upward.W.Grad); Real[] cupwardbGrad2 = (Real[])cLstm.upward.b.Grad; Real[] clateralWGrad = Real.ToRealArray((Real[, ])cLstm.lateral.W.Grad); //y21 Assert.AreEqual(cYdata21.Length, y21.Data.Length); for (int i = 0; i < cYdata21.Length; i++) { Assert.AreEqual(cYdata21[i], y21.Data[i], delta); } //y22 Assert.AreEqual(cYdata22.Length, y22.Data.Length); for (int i = 0; i < cYdata22.Length; i++) { Assert.AreEqual(cYdata22[i], y22.Data[i], delta); } //y23 Assert.AreEqual(cYdata23.Length, y23.Data.Length); for (int i = 0; i < cYdata23.Length; i++) { Assert.AreEqual(cYdata23[i], y23.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad2.Length, x2.Grad.Length); for (int i = 0; i < cXgrad2.Length; i++) { Assert.AreEqual(cXgrad2[i], x2.Grad[i], delta); } //経由が多くかなり誤差が大きい為 delta = 1.0; Real[] cWgrad22 = Real.ToRealArray((Real[, ])cLinear2.W.Grad); Real[] cbgrad22 = (Real[])cLinear2.b.Grad; //W.grad Assert.AreEqual(cWgrad22.Length, linear2.Weight.Grad.Length); for (int i = 0; i < linear2.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad22[i], linear2.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad22.Length, linear2.Bias.Grad.Length); for (int i = 0; i < linear2.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad22[i], linear2.Bias.Grad[i], delta); } delta = 2.0; //W.grad Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); for (int i = 0; i < clateralWGrad.Length; i++) { Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); } for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad2[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad2[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } delta = 20.0; Real[] cWgrad21 = Real.ToRealArray((Real[, ])cLinear1.W.Grad); Real[] cbgrad21 = (Real[])cLinear1.b.Grad; //W.grad Assert.AreEqual(cWgrad21.Length, linear1.Weight.Grad.Length); for (int i = 0; i < linear1.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad21[i], linear1.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad21.Length, linear1.Bias.Grad.Length); for (int i = 0; i < linear1.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad21[i], linear1.Bias.Grad[i], delta); } }
public void LRNRandomTest() { Python.Initialize(); Chainer.Initialize(); int n = Mother.Dice.Next(2, 7); float k = (float)Mother.Dice.NextDouble() * 3; int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] input = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width); Real[,,,] dummyGy = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width); //chainer LocalResponseNormalization <Real> cLocalResponseNormalization = new LocalResponseNormalization <Real>(n, k); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cLocalResponseNormalization.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //kelpnet LRN <Real> lrn = new LRN <Real>(n, k); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = lrn.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, , , ])cY.Data).Flatten(); Real[] cXgrad = ((Real[, , , ])cX.Grad).Flatten(); //許容範囲を算出 Real delta = 0.00001f; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void SwishRandomTest() { Python.Initialize(); Chainer.Initialize(); int ioCount = Mother.Dice.Next(1, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = Initializer.GetRandomValues <Real[, ]>(batchCount, ioCount); Real[,] dummyGy = Initializer.GetRandomValues <Real[, ]>(batchCount, ioCount); Real beta = (Real)Mother.Dice.NextDouble(); //Chainer NChainer.Swish <Real> cSwish = new NChainer.Swish <Real>(new[] { ioCount }, beta); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cSwish.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //KelpNet Swish <Real> swish = new Swish <Real>(new[] { ioCount }, beta); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = swish.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, ])cY.Data).Flatten(); Real[] cXgrad = ((Real[, ])cX.Grad).Flatten(); Real[] cbgrad = (Real[])cSwish.beta.Grad; //許容範囲を算出 Real delta = 0.00001f; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad.Length, swish.Beta.Grad.Length); for (int i = 0; i < swish.Beta.Grad.Length; i++) { Assert.AreEqual(cbgrad[i], swish.Beta.Grad[i], delta); } }
public void TrainTest(bool isTtrain, bool finetune) { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 50); int ioCount = Mother.Dice.Next(1, 50); Real[,] input = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, ioCount }); Real[,] dummyGy = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, ioCount }); Real[] gamma = Initializer.GetRealArray(ioCount); Real[] beta = Initializer.GetRealArray(ioCount); Real[] avgMean = Initializer.GetRealArray(ioCount); Real[] avgVar = Initializer.GetRealArray(ioCount); //Chainer Chainer.Config["train"] = isTtrain; NChainer.BatchNormalization <Real> cBatchNormalization = new NChainer.BatchNormalization <Real>(ioCount, dtype: Real.Type); cBatchNormalization.gamma = new Variable <Real>(Real.ToBaseNdArray(gamma)); cBatchNormalization.beta = new Variable <Real>(Real.ToBaseNdArray(beta)); cBatchNormalization.avgMean = Real.ToBaseNdArray(avgMean); cBatchNormalization.avgVar = Real.ToBaseNdArray(avgVar); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = cBatchNormalization.Forward(cX, finetune); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.BatchNormalization batchNormalization = new BatchNormalization(ioCount, train: isTtrain, finetune: finetune); batchNormalization.Gamma.Data = Real.ToRealArray(gamma); batchNormalization.Beta.Data = Real.ToRealArray(beta); batchNormalization.AvgMean.Data = Real.ToRealArray(avgMean); batchNormalization.AvgVar.Data = Real.ToRealArray(avgVar); NdArray x = new NdArray(Real.ToRealArray(input), new[] { ioCount }, batchCount); NdArray y = batchNormalization.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[, ])cY.Data); Real[] cXgrad = Real.ToRealArray((Real[, ])cX.Grad); Real[] cGammaGrad = Real.ToRealArray((Real[])cBatchNormalization.gamma.Grad); Real[] cBetaGrad = Real.ToRealArray((Real[])cBatchNormalization.beta.Grad); //許容範囲を算出 double delta = 0.00001; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //gamma.grad Assert.AreEqual(cGammaGrad.Length, batchNormalization.Gamma.Grad.Length); for (int i = 0; i < batchNormalization.Gamma.Grad.Length; i++) { Assert.AreEqual(cGammaGrad[i], batchNormalization.Gamma.Grad[i], delta); } //beta.grad Assert.AreEqual(cBetaGrad.Length, batchNormalization.Beta.Grad.Length); for (int i = 0; i < batchNormalization.Beta.Grad.Length; i++) { Assert.AreEqual(cBetaGrad[i], batchNormalization.Beta.Grad[i], delta); } }
public void ConcatRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int widthA = Mother.Dice.Next(1, 16); int widthB = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); int axis = 3; Real[,,,] inputA = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, widthA }); Real[,,,] inputB = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, widthB }); Real[,,,] dummyGy = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, widthA + widthB }); //chainer NChainer.Concat <Real> cConcat = new NChainer.Concat <Real>(axis); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(inputA)); Variable <Real> cY = new Variable <Real>(Real.ToBaseNdArray(inputB)); Variable <Real> cZ = cConcat.Forward(cX, cY); cZ.Grad = Real.ToBaseNdArray(dummyGy); cZ.Backward(); //KelpNet KelpNet.Concat concat = new Concat(axis - 1);//Chainerと異なり1次元目を暗黙的にBatchとみなさないため NdArray x = new NdArray(Real.ToRealArray(inputA), new[] { ch, height, widthA }, batchCount); NdArray y = new NdArray(Real.ToRealArray(inputB), new[] { ch, height, widthB }, batchCount); NdArray z = concat.Forward(x, y)[0]; z.Grad = Real.ToRealArray(dummyGy); z.Backward(); Real[] cZdata = Real.ToRealArray((Real[, , , ])cZ.Data); //Copyが必要 Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad.Copy()); Real[] cYgrad = Real.ToRealArray((Real[, , , ])cY.Grad.Copy()); //許容範囲を算出 double delta = 0.00001; //z Assert.AreEqual(cZdata.Length, z.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cZdata[i], z.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //y.grad Assert.AreEqual(cYgrad.Length, y.Grad.Length); for (int i = 0; i < y.Grad.Length; i++) { Assert.AreEqual(cYgrad[i], y.Grad[i], delta); } }
public void AVGPoolingRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int chCount = Mother.Dice.Next(1, 5); int wideSize = Mother.Dice.Next(8, 32); int heightSize = Mother.Dice.Next(8, 32); int kWidth = Mother.Dice.Next(1, 5); int kHeight = Mother.Dice.Next(1, 5); int strideX = Mother.Dice.Next(1, 5); int strideY = Mother.Dice.Next(1, 5); int padX = Mother.Dice.Next(0, 5); int padY = Mother.Dice.Next(0, 5); int outputHeight = (int)Math.Floor((heightSize - kHeight + padY * 2.0f) / strideY) + 1; int outputWidth = (int)Math.Floor((wideSize - kWidth + padX * 2.0f) / strideX) + 1; Real[,,,] input = Initializer.GetRandomValues <Real[, , , ]>(batchCount, chCount, heightSize, wideSize); Real[,,,] dummyGy = Initializer.GetRandomValues <Real[, , , ]>(batchCount, chCount, outputHeight, outputWidth); //Chainer NChainer.AveragePooling2D <Real> cMaxPooling2D = new NChainer.AveragePooling2D <Real>( new[] { kHeight, kWidth }, new[] { strideY, strideX }, new[] { padY, padX } ); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cMaxPooling2D.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //KelpNet KelpNet.AveragePooling2D <Real> maxPooling2D = new KelpNet.AveragePooling2D <Real>( new[] { kWidth, kHeight }, new[] { strideX, strideY }, new[] { padX, padY }); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = maxPooling2D.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, , , ])cY.Data.Copy()).Flatten(); Real[] cXgrad = ((Real[, , , ])cX.Grad.Copy()).Flatten(); //許容範囲を算出 Real delta = 0.00001f; Assert.AreEqual(cYdata.Length, y.Data.Length); Assert.AreEqual(cXgrad.Length, x.Grad.Length); //y for (int i = 0; i < y.Data.Length; i++) { if (cYdata[i] < float.Epsilon && cYdata[i] > -float.Epsilon) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } } //x.grad for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void AdamRandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(2, 50); int outputCount = Mother.Dice.Next(2, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = Initializer.GetRandomValues <Real[, ]>(batchCount, inputCount); Real[,] dummyGy = Initializer.GetRandomValues <Real[, ]>(batchCount, outputCount); Real[,] w = Initializer.GetRandomValues <Real[, ]>(outputCount, inputCount); Real[] b = Initializer.GetRandomValues <Real[]>(outputCount); float alpha = (float)Mother.Dice.NextDouble(); //0.001f float beta1 = (float)Mother.Dice.NextDouble(); //0.9f; float beta2 = (float)Mother.Dice.NextDouble(); //0.999f; float eps = (float)Mother.Dice.NextDouble(); //1e-08f; float eta = (float)Mother.Dice.NextDouble(); //1.0f; //Chainer NChainer.Linear <Real> cLinear = new NChainer.Linear <Real>(inputCount, outputCount, false, w, b); NChainer.Adam <Real> cAdam = new NChainer.Adam <Real>(alpha, beta1, beta2, eps, eta); cAdam.Setup(cLinear); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cLinear.Forward(cX); cY.Grad = dummyGy; cY.Backward(); cAdam.Update(); //KelpNet KelpNet.CL.Linear <Real> linear = new KelpNet.CL.Linear <Real>(inputCount, outputCount, false, w, b); KelpNet.Adam <Real> adam = new Adam <Real>(alpha, beta1, beta2, eps, eta); adam.SetUp(linear); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = linear.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); adam.Update(); Real[] cW = ((Real[, ])cLinear.W.Data).Flatten(); Real[] cb = (Real[])cLinear.b.Data; //許容範囲を算出 Real delta = 0.00001f; //W.grad Assert.AreEqual(cW.Length, linear.Weight.Data.Length); for (int i = 0; i < linear.Weight.Data.Length; i++) { Assert.AreEqual(cW[i], linear.Weight.Data[i], delta); } //b.grad Assert.AreEqual(cb.Length, linear.Bias.Data.Length); for (int i = 0; i < linear.Bias.Data.Length; i++) { Assert.AreEqual(cb[i], linear.Bias.Data[i], delta); } }
public void SGDRandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(2, 50); int outputCount = Mother.Dice.Next(2, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = Initializer.GetRandomValues <Real[, ]>(batchCount, inputCount); Real[,] dummyGy = Initializer.GetRandomValues <Real[, ]>(batchCount, outputCount); Real[,] w = Initializer.GetRandomValues <Real[, ]>(outputCount, inputCount); Real[] b = Initializer.GetRandomValues <Real[]>(outputCount); //Chainer Linear <Real> cLinear = new Linear <Real>(inputCount, outputCount, false, w, b); NChainer.SGD <Real> cSgd = new NChainer.SGD <Real>(); cSgd.Setup(cLinear); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cLinear.Forward(cX); cY.Grad = dummyGy; cY.Backward(); cSgd.Update(); //KelpNet CL.Linear <Real> linear = new CL.Linear <Real>(inputCount, outputCount, false, w, b); KelpNet.SGD <Real> sgd = new SGD <Real>(); sgd.SetUp(linear); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = linear.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); sgd.Update(); Real[] cW = ((Real[, ])cLinear.W.Data).Flatten(); Real[] cb = (Real[])cLinear.b.Data; //許容範囲を算出 Real delta = 0.00001f; //W.grad Assert.AreEqual(cW.Length, linear.Weight.Data.Length); for (int i = 0; i < linear.Weight.Data.Length; i++) { Assert.AreEqual(cW[i], linear.Weight.Data[i], delta); } //b.grad Assert.AreEqual(cb.Length, linear.Bias.Data.Length); for (int i = 0; i < linear.Bias.Data.Length; i++) { Assert.AreEqual(cb[i], linear.Bias.Data[i], delta); } }
public void MeanSquaredRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] inputA = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width }); Real[,,,] inputB = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width }); for (int i = 0; i < inputB.GetLength(0); i++) { for (int j = 0; j < inputB.GetLength(1); j++) { for (int k = 0; k < inputB.GetLength(2); k++) { for (int l = 0; l < inputB.GetLength(3); l++) { inputB[i, j, k, l] *= 3.1415; } } } } //chainer NChainer.MeanSquaredError <Real> cMeanSquaredError = new NChainer.MeanSquaredError <Real>(); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(inputA)); Variable <Real> cY = new Variable <Real>(Real.ToBaseNdArray(inputB)); Variable <Real> cZ = cMeanSquaredError.Forward(cX, cY); cZ.Backward(); Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad); //KelpNet KelpNet.MeanSquaredError meanSquaredError = new KelpNet.MeanSquaredError(); NdArray x = new NdArray(Real.ToRealArray(inputA), new[] { ch, height, width }, batchCount); NdArray y = new NdArray(Real.ToRealArray(inputB), new[] { ch, height, width }, batchCount); //KelpNetはBackwaward側のみEvaluateで実行される NdArray z = meanSquaredError.Evaluate(x, y); //許容範囲を算出(内部の割引順が違うため誤差が大きい) double delta = 0.001; //Loss Assert.AreEqual(cZ.Data[0], z.Data[0], delta); //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void LRNRandomTest() { Python.Initialize(); Chainer.Initialize(); int n = Mother.Dice.Next(2, 7); float k = (float)Mother.Dice.NextDouble() * 3; int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] input = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width }); Real[,,,] dummyGy = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width }); //chainer NChainer.LocalResponseNormalization <Real> cLocalResponseNormalization = new NChainer.LocalResponseNormalization <Real>(n, k); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = cLocalResponseNormalization.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //kelpnet KelpNet.LRN lrn = new LRN(n, k); NdArray x = new NdArray(Real.ToRealArray(input), new[] { ch, height, width }, batchCount); NdArray y = lrn.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[, , , ])cY.Data); Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad); //許容範囲を算出 double delta = 0.00001; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void SplitAxisRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int widthA = Mother.Dice.Next(1, 16); int widthB = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); int axis = 3; Real[,,,] input = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, widthA + widthB); Real[,,,] dummyGyA = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, widthA); Real[,,,] dummyGyB = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, widthB); //chainer NChainer.SplitAxis <Real> cSplitAxis = new NChainer.SplitAxis <Real>(); Variable <Real> cX = new Variable <Real>(input); PyObject[] cY = cSplitAxis.Forward(cX, new[] { widthA }, axis); Variable <Real> cY0 = cY[0]; Variable <Real> cY1 = cY[1]; cY0.Grad = dummyGyA; cY1.Grad = dummyGyB; //Chainerはどちらか一方で両方分のBackwardが走る cY0.Backward(); //cY1.Backward(); //KelpNet SplitAxis <Real> splitAxis = new SplitAxis <Real>(new[] { widthA }, axis - 1); //Chainerと異なり1次元目を暗黙的にBatchとみなさないため NdArray <Real> x = new NdArray <Real>(input, asBatch: true); // new NdArray(Real.ToRealArray(), new[] { ch, height, widthA + widthB }, batchCount); NdArray <Real>[] y = splitAxis.Forward(x); y[0].Grad = dummyGyA.Flatten(); y[1].Grad = dummyGyB.Flatten(); //KelpNetは出力した両方からBackwardしないと処理が走らない y[0].Backward(); y[1].Backward(); //Copyが必要 Real[] cY0data = ((Real[, , , ])cY0.Data.Copy()).Flatten(); Real[] cY1data = ((Real[, , , ])cY1.Data.Copy()).Flatten(); Real[] cXgrad = ((Real[, , , ])cX.Grad).Flatten(); //許容範囲を算出 Real delta = 0.00001f; //y0 Assert.AreEqual(cY0data.Length, y[0].Data.Length); for (int i = 0; i < y[0].Data.Length; i++) { Assert.AreEqual(cY0data[i], y[0].Data[i], delta); } //y1 Assert.AreEqual(cY1data.Length, y[1].Data.Length); for (int i = 0; i < y[1].Data.Length; i++) { Assert.AreEqual(cY1data[i], y[1].Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void RandomTest(bool gpuEnable) { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(1, 50); int outputCount = Mother.Dice.Next(1, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = Initializer.GetRandomValues <Real[, ]>(batchCount, inputCount); Real[,] dummyGy = Initializer.GetRandomValues <Real[, ]>(batchCount, outputCount); Real[,] w = Initializer.GetRandomValues <Real[, ]>(outputCount, inputCount); Real[] b = Initializer.GetRandomValues <Real[]>(outputCount); //Chainer NChainer.Linear <Real> cLinear = new NChainer.Linear <Real>(inputCount, outputCount, false, w, b); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cLinear.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //KelpNet CL.Linear <Real> linear = new CL.Linear <Real>(inputCount, outputCount, false, w, b, gpuEnable: gpuEnable); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = linear.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, ])cY.Data).Flatten(); Real[] cXgrad = ((Real[, ])cX.Grad).Flatten(); Real[] cWgrad = ((Real[, ])cLinear.W.Grad).Flatten(); Real[] cbgrad = (Real[])cLinear.b.Grad; //許容範囲を算出 Real delta = 0.00001f; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //W.grad Assert.AreEqual(cWgrad.Length, linear.Weight.Grad.Length); for (int i = 0; i < linear.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad[i], linear.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad.Length, linear.Bias.Grad.Length); for (int i = 0; i < linear.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad[i], linear.Bias.Grad[i], delta); } }
public void RandomTest(bool gpuEnable) { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int inChCount = Mother.Dice.Next(1, 5); int outChCount = Mother.Dice.Next(1, 5); int wideSize = Mother.Dice.Next(8, 32); int heightSize = Mother.Dice.Next(8, 32); int kWidth = Mother.Dice.Next(1, 5); int kHeight = Mother.Dice.Next(1, 5); int strideX = Mother.Dice.Next(1, 5); int strideY = Mother.Dice.Next(1, 5); int padX = Mother.Dice.Next(0, 5); int padY = Mother.Dice.Next(0, 5); int outputHeight = (int)Math.Floor((heightSize - kHeight + padY * 2.0f) / strideY) + 1; int outputWidth = (int)Math.Floor((wideSize - kWidth + padX * 2.0f) / strideX) + 1; Real[,,,] input = Initializer.GetRandomValues <Real[, , , ]>(batchCount, inChCount, heightSize, wideSize); Real[,,,] dummyGy = Initializer.GetRandomValues <Real[, , , ]>(batchCount, outChCount, outputHeight, outputWidth); Real[,,,] w = Initializer.GetRandomValues <Real[, , , ]>(outChCount, inChCount, kHeight, kWidth); Real[] b = Initializer.GetRandomValues <Real[]>(outChCount); //Chainer NChainer.Convolution2D <Real> cConvolotion2D = new NChainer.Convolution2D <Real>( inChCount, outChCount, new[] { kHeight, kWidth }, new[] { strideY, strideX }, new[] { padY, padX }, false, w, b); Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cConvolotion2D.Forward(cX); cY.Grad = dummyGy; cY.Backward(); //KelpNet CL.Convolution2D <Real> convolution2D = new CL.Convolution2D <Real>( inChCount, outChCount, new[] { kWidth, kHeight }, new[] { strideX, strideY }, new[] { padX, padY }, false, w, b, gpuEnable: gpuEnable); NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = convolution2D.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, , , ])cY.Data.Copy()).Flatten(); Real[] cXgrad = ((Real[, , , ])cX.Grad.Copy()).Flatten(); Real[] cWgrad = ((Real[, , , ])cConvolotion2D.W.Grad).Flatten(); Real[] cbgrad = (Real[])cConvolotion2D.b.Grad; //許容範囲を算出 Real delta = 0.00001f; Assert.AreEqual(cYdata.Length, y.Data.Length); Assert.AreEqual(cXgrad.Length, x.Grad.Length); Assert.AreEqual(cWgrad.Length, convolution2D.Weight.Grad.Length); Assert.AreEqual(cbgrad.Length, convolution2D.Bias.Grad.Length); //y for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } delta = 0.1f; //W.grad for (int i = 0; i < convolution2D.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad[i], convolution2D.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < convolution2D.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad[i], convolution2D.Bias.Grad[i], delta); } }
public void RnnLSTMRandomTest() { Python.Initialize(); Chainer.Initialize(); Real[,] input = { { 1.0f }, { 3.0f }, { 5.0f }, { 7.0f }, { 9.0f } }; Real[,] teach = { { 3.0f }, { 5.0f }, { 7.0f }, { 9.0f }, { 11.0f } }; Real[,] input2 = { { 3.0f }, { 5.0f }, { 7.0f }, { 9.0f }, { 11.0f } }; Real[,] teach2 = { { 5.0f }, { 7.0f }, { 9.0f }, { 11.0f }, { 13.0f } }; int outputCount = 1; int inputCount = 1; int hiddenCount = 2; Real[,] upwardInit = Initializer.GetRandomValues <Real[, ]>(hiddenCount, hiddenCount); Real[,] lateralInit = Initializer.GetRandomValues <Real[, ]>(hiddenCount, hiddenCount); Real[,,] biasInit = Initializer.GetRandomValues <Real[, , ]>(1, hiddenCount, 1); Real[,,] forgetBiasInit = Initializer.GetRandomValues <Real[, , ]>(1, hiddenCount, 1); //Chainer Real[,] w1 = Initializer.GetRandomValues <Real[, ]>(hiddenCount, inputCount); Real[] b1 = Initializer.GetRandomValues <Real[]>(hiddenCount); //Chainer Linear <Real> cLinear1 = new Linear <Real>(inputCount, hiddenCount, false, w1, b1); NChainer.LSTM <Real> cLstm = new NChainer.LSTM <Real>(hiddenCount, hiddenCount, lateralInit, upwardInit, biasInit, forgetBiasInit); Real[,] w2 = Initializer.GetRandomValues <Real[, ]>(outputCount, hiddenCount); Real[] b2 = Initializer.GetRandomValues <Real[]>(outputCount); Linear <Real> cLinear2 = new Linear <Real>(hiddenCount, outputCount, false, w2, b2); Variable <Real> cX1 = new Variable <Real>(input); Variable <Real> cY11 = cLinear1.Forward(cX1); Variable <Real> cY12 = cLstm.Forward(cY11); Variable <Real> cY13 = cLinear2.Forward(cY12); Variable <Real> cT = new Variable <Real>(teach); Variable <Real> cLoss = new NChainer.MeanSquaredError <Real>().Forward(cY13, cT); cLoss.Backward(); //KelpNet CL.Linear <Real> linear1 = new CL.Linear <Real>(inputCount, hiddenCount, false, w1, b1); LSTM <Real> lstm = new LSTM <Real>(hiddenCount, hiddenCount, lateralInit, upwardInit, biasInit, forgetBiasInit); CL.Linear <Real> linear2 = new CL.Linear <Real>(hiddenCount, outputCount, false, w2, b2); NdArray <Real> x1 = new NdArray <Real>(input, asBatch: true); NdArray <Real> y11 = linear1.Forward(x1)[0]; NdArray <Real> y12 = lstm.Forward(y11)[0]; NdArray <Real> y13 = linear2.Forward(y12)[0]; NdArray <Real> t = new NdArray <Real>(teach, asBatch: true); NdArray <Real> loss = new MeanSquaredError <Real>().Evaluate(y13, t); y13.Backward(); Real[] cY11data = ((Real[, ])cY11.Data).Flatten(); Real[] cY12data = ((Real[, ])cY12.Data).Flatten(); Real[] cY13data = ((Real[, ])cY13.Data).Flatten(); Real[] cXgrad = ((Real[, ])cX1.Grad).Flatten(); Real[] cupwardWGrad = ((Real[, ])cLstm.upward.W.Grad).Flatten(); Real[] cupwardbGrad = (Real[])cLstm.upward.b.Grad; //許容範囲を設定 Real delta = 0.00001f; //y11 Assert.AreEqual(cY11data.Length, y11.Data.Length); for (int i = 0; i < cY11data.Length; i++) { Assert.AreEqual(cY11data[i], y11.Data[i], delta); } //y12 Assert.AreEqual(cY12data.Length, y12.Data.Length); for (int i = 0; i < cY12data.Length; i++) { Assert.AreEqual(cY12data[i], y12.Data[i], delta); } //y13 Assert.AreEqual(cY13data.Length, y13.Data.Length); for (int i = 0; i < cY13data.Length; i++) { Assert.AreEqual(cY13data[i], y13.Data[i], delta); } //許容範囲を設定 delta = 0.0001f; //loss Assert.AreEqual(cLoss.Data[0], loss.Data[0], delta); //x.Grad Assert.AreEqual(cXgrad.Length, x1.Grad.Length); for (int i = 0; i < cXgrad.Length; i++) { Assert.AreEqual(cXgrad[i], x1.Grad[i], delta); } Real[] cWgrad11 = ((Real[, ])cLinear1.W.Grad).Flatten(); Real[] cbgrad11 = (Real[])cLinear1.b.Grad; //W.grad Assert.AreEqual(cWgrad11.Length, linear1.Weight.Grad.Length); for (int i = 0; i < linear1.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad11[i], linear1.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad11.Length, linear1.Bias.Grad.Length); for (int i = 0; i < linear1.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad11[i], linear1.Bias.Grad[i], delta); } Real[] cWgrad12 = ((Real[, ])cLinear2.W.Grad).Flatten(); Real[] cbgrad12 = (Real[])cLinear2.b.Grad; //W.grad Assert.AreEqual(cWgrad12.Length, linear2.Weight.Grad.Length); for (int i = 0; i < linear2.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad12[i], linear2.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad12.Length, linear2.Bias.Grad.Length); for (int i = 0; i < linear2.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad12[i], linear2.Bias.Grad[i], delta); } //W.grad int wLen = lstm.upward.Weight.Grad.Length; Assert.AreEqual(cupwardWGrad.Length, lstm.upward.Weight.Grad.Length); for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad int bLen = lstm.upward.Bias.Length; Assert.AreEqual(cupwardbGrad.Length, lstm.upward.Bias.Grad.Length); for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } //2周目 Variable <Real> cX2 = new Variable <Real>(input2); Variable <Real> cY21 = cLinear1.Forward(cX2); Variable <Real> cY22 = cLstm.Forward(cY21); Variable <Real> cY23 = cLinear2.Forward(cY22); Variable <Real> cT2 = new Variable <Real>(teach2); Variable <Real> cLoss2 = new NChainer.MeanSquaredError <Real>().Forward(cY23, cT2); //KelpNet NdArray <Real> x2 = new NdArray <Real>(input2, asBatch: true); NdArray <Real> y21 = linear1.Forward(x2)[0]; NdArray <Real> y22 = lstm.Forward(y21)[0]; NdArray <Real> y23 = linear2.Forward(y22)[0]; NdArray <Real> t2 = new NdArray <Real>(teach2, asBatch: true); NdArray <Real> loss2 = new MeanSquaredError <Real>().Evaluate(y23, t2); Assert.AreEqual(cLoss2.Data[0], loss2.Data[0], delta); //Backwardを実行 cLoss2.Backward(); y23.Backward(); Real[] cYdata21 = ((Real[, ])cY21.Data).Flatten(); Real[] cYdata22 = ((Real[, ])cY22.Data).Flatten(); Real[] cYdata23 = ((Real[, ])cY23.Data).Flatten(); Real[] cXgrad2 = ((Real[, ])cX2.Grad).Flatten(); Real[] cupwardWGrad2 = ((Real[, ])cLstm.upward.W.Grad).Flatten(); Real[] cupwardbGrad2 = (Real[])cLstm.upward.b.Grad; Real[] clateralWGrad = ((Real[, ])cLstm.lateral.W.Grad).Flatten(); //y21 Assert.AreEqual(cYdata21.Length, y21.Data.Length); for (int i = 0; i < cYdata21.Length; i++) { Assert.AreEqual(cYdata21[i], y21.Data[i], delta); } //y22 Assert.AreEqual(cYdata22.Length, y22.Data.Length); for (int i = 0; i < cYdata22.Length; i++) { Assert.AreEqual(cYdata22[i], y22.Data[i], delta); } //y23 Assert.AreEqual(cYdata23.Length, y23.Data.Length); for (int i = 0; i < cYdata23.Length; i++) { Assert.AreEqual(cYdata23[i], y23.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad2.Length, x2.Grad.Length); for (int i = 0; i < cXgrad2.Length; i++) { Assert.AreEqual(cXgrad2[i], x2.Grad[i], delta); } //経由が多くかなり誤差が大きい為 delta = 1.0f; Real[] cWgrad22 = ((Real[, ])cLinear2.W.Grad).Flatten(); Real[] cbgrad22 = (Real[])cLinear2.b.Grad; //W.grad Assert.AreEqual(cWgrad22.Length, linear2.Weight.Grad.Length); for (int i = 0; i < linear2.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad22[i], linear2.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad22.Length, linear2.Bias.Grad.Length); for (int i = 0; i < linear2.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad22[i], linear2.Bias.Grad[i], delta); } delta = 2.0f; //W.grad Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); for (int i = 0; i < clateralWGrad.Length; i++) { Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); } for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad2[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad2[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } delta = 20.0f; Real[] cWgrad21 = ((Real[, ])cLinear1.W.Grad).Flatten(); Real[] cbgrad21 = (Real[])cLinear1.b.Grad; //W.grad Assert.AreEqual(cWgrad21.Length, linear1.Weight.Grad.Length); for (int i = 0; i < linear1.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad21[i], linear1.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad21.Length, linear1.Bias.Grad.Length); for (int i = 0; i < linear1.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad21[i], linear1.Bias.Grad[i], delta); } }
public void RandomTest(bool gpuEnable) { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int chCount = Mother.Dice.Next(1, 5); int wideSize = Mother.Dice.Next(8, 32); int heightSize = Mother.Dice.Next(8, 32); int kWidth = Mother.Dice.Next(1, 5); int kHeight = Mother.Dice.Next(1, 5); int strideX = Mother.Dice.Next(1, 5); int strideY = Mother.Dice.Next(1, 5); int padX = Mother.Dice.Next(0, 5); int padY = Mother.Dice.Next(0, 5); bool coverAll = Mother.Dice.Next(1) == 0; int outputHeight = coverAll ? (int)Math.Floor((heightSize - kHeight + padY * 2.0 + strideY - 1) / strideY) + 1 : (int)Math.Floor((heightSize - kHeight + padY * 2.0) / strideY) + 1; int outputWidth = coverAll ? (int)Math.Floor((wideSize - kWidth + padX * 2.0 + strideX - 1) / strideX) + 1 : (int)Math.Floor((wideSize - kWidth + padX * 2.0) / strideX) + 1; Real[,,,] input = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, chCount, heightSize, wideSize }); Real[,,,] dummyGy = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, chCount, outputHeight, outputWidth }); //Chainer NChainer.MaxPooling2D <Real> cMaxPooling2D = new NChainer.MaxPooling2D <Real>( new[] { kHeight, kWidth }, new[] { strideY, strideX }, new[] { padY, padX } ); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = cMaxPooling2D.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); //KelpNet KelpNet.CL.MaxPooling2D maxPooling2D = new KelpNet.CL.MaxPooling2D( new[] { kWidth, kHeight }, new[] { strideX, strideY }, new[] { padX, padY }, gpuEnable: gpuEnable); NdArray x = new NdArray(Real.ToRealArray(input), new[] { chCount, heightSize, wideSize }, batchCount); NdArray y = maxPooling2D.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); Real[] cYdata = Real.ToRealArray((Real[, , , ])cY.Data.Copy()); Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad.Copy()); //許容範囲を算出 double delta = 0.00001; Assert.AreEqual(cYdata.Length, y.Data.Length); Assert.AreEqual(cXgrad.Length, x.Grad.Length); //y for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void SGDRandomTest() { Python.Initialize(); Chainer.Initialize(); int inputCount = Mother.Dice.Next(2, 50); int outputCount = Mother.Dice.Next(2, 50); int batchCount = Mother.Dice.Next(1, 5); Real[,] input = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, inputCount }); Real[,] dummyGy = (Real[, ])Initializer.GetRealNdArray(new[] { batchCount, outputCount }); Real[,] w = (Real[, ])Initializer.GetRealNdArray(new[] { outputCount, inputCount }); Real[] b = Initializer.GetRealArray(outputCount); //Chainer NChainer.Linear <Real> cLinear = new NChainer.Linear <Real>(inputCount, outputCount, false, Real.ToBaseNdArray(w), Real.ToBaseArray(b)); NChainer.SGD <Real> cSgd = new NChainer.SGD <Real>(); cSgd.Setup(cLinear); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY = cLinear.Forward(cX); cY.Grad = Real.ToBaseNdArray(dummyGy); cY.Backward(); cSgd.Update(); //KelpNet KelpNet.Linear linear = new KelpNet.Linear(inputCount, outputCount, false, w, b); KelpNet.SGD sgd = new SGD(); sgd.SetUp(linear); NdArray x = new NdArray(Real.ToRealArray(input), new[] { inputCount }, batchCount); NdArray y = linear.Forward(x)[0]; y.Grad = Real.ToRealArray(dummyGy); y.Backward(); sgd.Update(); Real[] cW = Real.ToRealArray((Real[, ])cLinear.W.Data); Real[] cb = (Real[])cLinear.b.Data; //許容範囲を算出 double delta = 0.00001; //W.grad Assert.AreEqual(cW.Length, linear.Weight.Data.Length); for (int i = 0; i < linear.Weight.Data.Length; i++) { Assert.AreEqual(cW[i], linear.Weight.Data[i], delta); } //b.grad Assert.AreEqual(cb.Length, linear.Bias.Data.Length); for (int i = 0; i < linear.Bias.Data.Length; i++) { Assert.AreEqual(cb[i], linear.Bias.Data[i], delta); } }
public void MeanSquaredRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] inputA = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width); Real[,,,] inputB = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width); for (int i = 0; i < inputB.GetLength(0); i++) { for (int j = 0; j < inputB.GetLength(1); j++) { for (int k = 0; k < inputB.GetLength(2); k++) { for (int l = 0; l < inputB.GetLength(3); l++) { inputB[i, j, k, l] *= (Real)3.1415f; } } } } //chainer NChainer.MeanSquaredError <Real> cMeanSquaredError = new NChainer.MeanSquaredError <Real>(); Variable <Real> cX = new Variable <Real>(inputA); Variable <Real> cY = new Variable <Real>(inputB); Variable <Real> cZ = cMeanSquaredError.Forward(cX, cY); cZ.Backward(); Real[] cXgrad = ((Real[, , , ])cX.Grad).Flatten(); //KelpNet KelpNet.MeanSquaredError <Real> meanSquaredError = new KelpNet.MeanSquaredError <Real>(); NdArray <Real> x = new NdArray <Real>(inputA, asBatch: true); NdArray <Real> y = new NdArray <Real>(inputB, asBatch: true); //KelpNetはBackwaward側のみEvaluateで実行される NdArray <Real> z = meanSquaredError.Evaluate(x, y); //許容範囲を算出(内部の割引順が違うため誤差が大きい) Real delta = 0.001f; //Loss Assert.AreEqual(cZ.Data[0], z.Data[0], delta); //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void TrainTest(bool isTtrain, bool finetune) { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 50); int ioCount = Mother.Dice.Next(1, 50); Real[,] input = Initializer.GetRandomValues <Real[, ]>(batchCount, ioCount); Real[,] dummyGy = Initializer.GetRandomValues <Real[, ]>(batchCount, ioCount); Real[] gamma = Initializer.GetRandomValues <Real[]>(ioCount); Real[] beta = Initializer.GetRandomValues <Real[]>(ioCount); Real[] avgMean = Initializer.GetRandomValues <Real[]>(ioCount); Real[] avgVar = Initializer.GetRandomValues <Real[]>(ioCount); //Chainer Chainer.Config["train"] = isTtrain; NChainer.BatchNormalization <Real> cBatchNormalization = new NChainer.BatchNormalization <Real>(ioCount, dtype: typeof(Real)); cBatchNormalization.gamma = new Variable <Real>(gamma); cBatchNormalization.beta = new Variable <Real>(beta); cBatchNormalization.avgMean = avgMean; cBatchNormalization.avgVar = avgVar; Variable <Real> cX = new Variable <Real>(input); Variable <Real> cY = cBatchNormalization.Forward(cX, finetune); cY.Grad = dummyGy; cY.Backward(); //KelpNet KelpNet.BatchNormalization <Real> batchNormalization = new BatchNormalization <Real>(ioCount, train: isTtrain, finetune: finetune); batchNormalization.Gamma.Data = gamma; batchNormalization.Beta.Data = beta; batchNormalization.AvgMean.Data = avgMean; batchNormalization.AvgVar.Data = avgVar; NdArray <Real> x = new NdArray <Real>(input, asBatch: true); NdArray <Real> y = batchNormalization.Forward(x)[0]; y.Grad = dummyGy.Flatten(); y.Backward(); Real[] cYdata = ((Real[, ])cY.Data).Flatten(); Real[] cXgrad = ((Real[, ])cX.Grad).Flatten(); Real[] cGammaGrad = (Real[])cBatchNormalization.gamma.Grad; Real[] cBetaGrad = (Real[])cBatchNormalization.beta.Grad; //許容範囲を算出 Real delta = 0.00005f; //y Assert.AreEqual(cYdata.Length, y.Data.Length); for (int i = 0; i < y.Data.Length; i++) { Assert.AreEqual(cYdata[i], y.Data[i], delta); } //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } //gamma.grad Assert.AreEqual(cGammaGrad.Length, batchNormalization.Gamma.Grad.Length); for (int i = 0; i < batchNormalization.Gamma.Grad.Length; i++) { Assert.AreEqual(cGammaGrad[i], batchNormalization.Gamma.Grad[i], delta); } //beta.grad Assert.AreEqual(cBetaGrad.Length, batchNormalization.Beta.Grad.Length); for (int i = 0; i < batchNormalization.Beta.Grad.Length; i++) { Assert.AreEqual(cBetaGrad[i], batchNormalization.Beta.Grad[i], delta); } }