public override void Init() { cuda = new CUDA(0, true); var cuCtx = cuda.CreateContext(0, CUCtxFlags.MapHost); cuda.SetCurrentContext(cuCtx); cuModule = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, cudaModuleName)); cuFunc = cuda.GetModuleFunction(cudaEvaluatorKernelName); cuFuncSign = cuda.GetModuleFunction(cudaSignKernelName); //reserved memory based on dimension of support vector //svVector = new float[TrainedModel.SupportElements[0].Count]; stream = cuda.CreateStream(); //memSvSize = (uint)(TrainedModel.SupportElements[0].Count * sizeof(float)); memSvSize = (uint)(TrainedModel.SupportElements[0].Dim * sizeof(float)); //allocates memory for buffers svVecIntPtrs[0] = cuda.AllocateHost(memSvSize); svVecIntPtrs[1] = cuda.AllocateHost(memSvSize); mainVecPtr = cuda.CopyHostToDeviceAsync(svVecIntPtrs[0], memSvSize, stream); cuSVTexRef = cuda.GetModuleTexture(cuModule, "svTexRef"); cuda.SetTextureFlags(cuSVTexRef, 0); cuda.SetTextureAddress(cuSVTexRef, mainVecPtr, memSvSize); //todo: copy labels and alphas float[] svLabels = new float[TrainedModel.SupportElements.Length]; float[] svAlphas = new float[TrainedModel.SupportElements.Length]; Parallel.For(0, TrainedModel.SupportElementsIndexes.Length, i => { int idx = TrainedModel.SupportElementsIndexes[i]; svLabels[i] = TrainedModel.Y[i]; //svLabels[i] = TrainningProblem.Labels[idx]; svAlphas[i] = TrainedModel.Alpha[idx]; }); //for (int i = 0; i < TrainedModel.SupportElementsIndexes.Length; i++) //{ // int idx = TrainedModel.SupportElementsIndexes[i]; // svLabels[i]= TrainningProblem.Labels[idx]; // svAlphas[i] = TrainedModel.Alpha[idx]; //} labelsPtr = cuda.CopyHostToDevice(svLabels); alphasPtr = cuda.CopyHostToDevice(svAlphas); IsInitialized = true; }
static void Main(string[] args) { // Create a new instance of CUDA class, select 1st device. CUDA cuda = new CUDA(0, true); // Prepare parameters. int n = 16 * 1024 * 1024; uint nbytes = (uint)(n * sizeof(int)); int value = 26; // allocate host memory int[] a = new int[n]; // allocate device memory CUdeviceptr d_a = cuda.Allocate<int>(a); CUDADriver.cuMemsetD8(d_a, 0xff, nbytes); // load module cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "asyncAPI.ptx")); CUfunction func = cuda.GetModuleFunction("increment_kernel"); // set kernel launch configuration cuda.SetFunctionBlockShape(func, 512, 1, 1); // create cuda event handles CUevent start = cuda.CreateEvent(); CUevent stop = cuda.CreateEvent(); // asynchronously issue work to the GPU (all to stream 0) CUstream stream = new CUstream(); cuda.RecordEvent(start); cuda.CopyHostToDeviceAsync<int>(d_a, a, stream); // set parameters for kernel function cuda.SetParameter(func, 0, (uint)d_a.Pointer); cuda.SetParameter(func, IntPtr.Size, (uint)value); cuda.SetParameterSize(func, (uint)(IntPtr.Size + 4)); // actually launch kernel cuda.LaunchAsync(func, n / 512, 1, stream); // wait for every thing to finish, then start copy back data cuda.CopyDeviceToHostAsync<int>(d_a, a, stream); cuda.RecordEvent(stop); // print the cpu and gpu times Console.WriteLine("time spent executing by the GPU: {0} ms", cuda.ElapsedTime(start, stop)); // check the output for correctness if (CorrectOutput(a, value)) Console.WriteLine("Test PASSED"); else Console.WriteLine("Test FAILED"); // release resources cuda.DestroyEvent(start); cuda.DestroyEvent(stop); cuda.Free(d_a); }
public static float[] CRSSparseMMwithDenseVector(int repetition, string moduleFunction, int blockSizeX, int blockSizeY) { CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "matrixKernels.cubin")); CUfunction cuFunc = cuda.GetModuleFunction(moduleFunction); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("------------------------------------"); Console.WriteLine("init Matrix"); Stopwatch t = Stopwatch.StartNew(); //values in CRS format float[] AVals, BVals; //indexes in Crs format int[] AIdx, BIdx; //Lenght of each row in CRS format int[] ARowLen, BRowLen; int maxIndex = 0; MakeRandCrsSparseMatrix(Rows, maxRowSize, out AVals, out AIdx, out ARowLen, out maxIndex); // DisplayCrsMatrix(AVals, AIdx, ARowLen,maxIndex); MakeRandCrsSparseMatrix(Cols, maxRowSize, out BVals, out BIdx, out BRowLen, out maxIndex); //DisplayCrsMatrix(BVals, BIdx, BRowLen, maxIndex); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr AValsPtr = cuda.CopyHostToDevice(AVals); CUdeviceptr AIdxPtr = cuda.CopyHostToDevice(AIdx); CUdeviceptr ALenghtPtr = cuda.CopyHostToDevice(ARowLen); int outputSize = Rows * Cols; float[] output = new float[outputSize]; //allocate memory for output IntPtr outputPtr2 = cuda.HostAllocate((uint)(outputSize * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); //create dense vector for each column in B matrix float[] mainVec = new float[maxIndex + 1]; uint memSize = (uint)((maxIndex + 1) * sizeof(float)); CUstream stream0 =cuda.CreateStream(); IntPtr[] mainVecIntPtrs= new IntPtr[2]; //write combined memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); // //mainVecIntPtrs[0] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //mainVecIntPtrs[1] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); mainVecIntPtrs[0] = cuda.AllocateHost(memSize); mainVecIntPtrs[1] = cuda.AllocateHost(memSize); CUdeviceptr mainVecPtr = cuda.CopyHostToDeviceAsync(mainVecIntPtrs[0], memSize, stream0); //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_PORTABLE); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); //mapped memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); //CUdeviceptr mainVecPtr = cuda.CopyHostToDevice(mainVecIPtr, memSize); //get texture reference CUtexref cuTexRef = cuda.GetModuleTexture(module, "vectorTexRef"); cuda.SetTextureFlags(cuTexRef, 0); cuda.SetTextureAddress(cuTexRef, mainVecPtr, memSize); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters int Aelements = AVals.Length; cuda.SetFunctionBlockShape(cuFunc, blockSizeX, blockSizeY, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, AValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, AIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, ALenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)Rows); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Cols); offset += sizeof(int); int colIndexParamOffset = offset; cuda.SetParameter(cuFunc, offset, (uint)0); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); int gridDimX = (int)Math.Ceiling((Rows + 0.0) / (blockSizeX)); int gridDim= (Rows + blockSizeX - 1) / blockSizeX; Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int rep = 0; rep < repetition; rep++) { for (int k = 0; k < Cols; k++) { Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIntPtrs[k % 2]); cuda.SynchronizeStream(stream0); cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIntPtrs[k % 2], memSize, stream0); cuda.SetParameter(cuFunc, colIndexParamOffset,(uint) k); cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer Helpers.SetBufferIdx(BIdx, BRowLen, k-1, mainVecIntPtrs[(k+1) % 2], 0.0f); //Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIPtr); ////make asynchronius copy and kernel lauch //cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIPtr, memSize, stream0); //cuda.SetParameter(cuFunc, colIndexParamOffset,(uint) k); //cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer //Helpers.SetBufferIdx(BIdx, BRowLen, k, mainVecIPtr, 0.0f); } } cuda.RecordEvent(end); cuda.SynchronizeContext(); timer.Stop(); float cudaTime = cuda.ElapsedTime(start, end); Marshal.Copy(outputPtr2, output, 0, outputSize); Console.WriteLine("Matrix products with kernel {0}", moduleFunction); Console.WriteLine(" takes {0} ms stopwatch time {1} ms", cudaTime, timer.Elapsed); int lenght = displayCount;// Math.Min(displayCount, Rows); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(AValsPtr); cuda.Free(AIdxPtr); cuda.Free(ALenghtPtr); cuda.Free(dOutput); cuda.DestroyEvent(start); cuda.DestroyEvent(end); cuda.DestroyStream(stream0); cuda.Free(mainVecPtr); cuda.DestroyTexture(cuTexRef); return output; }
public static float[] CRSSparseMMwithDenseVector(int repetition, string moduleFunction, int blockSizeX, int blockSizeY) { CUDA cuda = new CUDA(0, true); // load module CUmodule module = cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "matrixKernels.cubin")); CUfunction cuFunc = cuda.GetModuleFunction(moduleFunction); int maxRowSize = avgElements + stdElements - 1; Console.WriteLine("------------------------------------"); Console.WriteLine("init Matrix"); Stopwatch t = Stopwatch.StartNew(); //values in CRS format float[] AVals, BVals; //indexes in Crs format int[] AIdx, BIdx; //Lenght of each row in CRS format int[] ARowLen, BRowLen; int maxIndex = 0; MakeRandCrsSparseMatrix(Rows, maxRowSize, out AVals, out AIdx, out ARowLen, out maxIndex); // DisplayCrsMatrix(AVals, AIdx, ARowLen,maxIndex); MakeRandCrsSparseMatrix(Cols, maxRowSize, out BVals, out BIdx, out BRowLen, out maxIndex); //DisplayCrsMatrix(BVals, BIdx, BRowLen, maxIndex); Console.WriteLine("Init takes {0}", t.Elapsed); t.Start(); CUdeviceptr AValsPtr = cuda.CopyHostToDevice(AVals); CUdeviceptr AIdxPtr = cuda.CopyHostToDevice(AIdx); CUdeviceptr ALenghtPtr = cuda.CopyHostToDevice(ARowLen); int outputSize = Rows * Cols; float[] output = new float[outputSize]; //allocate memory for output IntPtr outputPtr2 = cuda.HostAllocate((uint)(outputSize * sizeof(float)), CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); CUdeviceptr dOutput = cuda.GetHostDevicePointer(outputPtr2, 0); //create dense vector for each column in B matrix float[] mainVec = new float[maxIndex + 1]; uint memSize = (uint)((maxIndex + 1) * sizeof(float)); CUstream stream0 = cuda.CreateStream(); IntPtr[] mainVecIntPtrs = new IntPtr[2]; //write combined memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); // //mainVecIntPtrs[0] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); //mainVecIntPtrs[1] = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_WRITECOMBINED); mainVecIntPtrs[0] = cuda.AllocateHost(memSize); mainVecIntPtrs[1] = cuda.AllocateHost(memSize); CUdeviceptr mainVecPtr = cuda.CopyHostToDeviceAsync(mainVecIntPtrs[0], memSize, stream0); //IntPtr mainVecIPtr = cuda.HostAllocate(memSize,CUDADriver.CU_MEMHOSTALLOC_PORTABLE); //CUdeviceptr mainVecPtr=cuda.CopyHostToDeviceAsync(mainVecIPtr,memSize,stream0); //mapped memory allocation //IntPtr mainVecIPtr = cuda.HostAllocate(memSize, CUDADriver.CU_MEMHOSTALLOC_DEVICEMAP); //CUdeviceptr mainVecPtr = cuda.CopyHostToDevice(mainVecIPtr, memSize); //get texture reference CUtexref cuTexRef = cuda.GetModuleTexture(module, "vectorTexRef"); cuda.SetTextureFlags(cuTexRef, 0); cuda.SetTextureAddress(cuTexRef, mainVecPtr, memSize); Console.WriteLine("copy to device takes {0}", t.Elapsed); #region set cuda parameters int Aelements = AVals.Length; cuda.SetFunctionBlockShape(cuFunc, blockSizeX, blockSizeY, 1); int offset = 0; cuda.SetParameter(cuFunc, offset, AValsPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, AIdxPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, ALenghtPtr.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, dOutput.Pointer); offset += IntPtr.Size; cuda.SetParameter(cuFunc, offset, (uint)Rows); offset += sizeof(int); cuda.SetParameter(cuFunc, offset, (uint)Cols); offset += sizeof(int); int colIndexParamOffset = offset; cuda.SetParameter(cuFunc, offset, (uint)0); offset += sizeof(int); cuda.SetParameterSize(cuFunc, (uint)offset); #endregion Console.WriteLine("start computation"); CUevent start = cuda.CreateEvent(); CUevent end = cuda.CreateEvent(); int gridDimX = (int)Math.Ceiling((Rows + 0.0) / (blockSizeX)); int gridDim = (Rows + blockSizeX - 1) / blockSizeX; Stopwatch timer = Stopwatch.StartNew(); cuda.RecordEvent(start); for (int rep = 0; rep < repetition; rep++) { for (int k = 0; k < Cols; k++) { Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIntPtrs[k % 2]); cuda.SynchronizeStream(stream0); cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIntPtrs[k % 2], memSize, stream0); cuda.SetParameter(cuFunc, colIndexParamOffset, (uint)k); cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer Helpers.SetBufferIdx(BIdx, BRowLen, k - 1, mainVecIntPtrs[(k + 1) % 2], 0.0f); //Helpers.InitBuffer(BVals, BIdx, BRowLen, k, mainVecIPtr); ////make asynchronius copy and kernel lauch //cuda.CopyHostToDeviceAsync(mainVecPtr, mainVecIPtr, memSize, stream0); //cuda.SetParameter(cuFunc, colIndexParamOffset,(uint) k); //cuda.LaunchAsync(cuFunc, gridDimX, 1, stream0); //cuda.SynchronizeStream(stream0); ////clear host buffer //Helpers.SetBufferIdx(BIdx, BRowLen, k, mainVecIPtr, 0.0f); } } cuda.RecordEvent(end); cuda.SynchronizeContext(); timer.Stop(); float cudaTime = cuda.ElapsedTime(start, end); Marshal.Copy(outputPtr2, output, 0, outputSize); Console.WriteLine("Matrix products with kernel {0}", moduleFunction); Console.WriteLine(" takes {0} ms stopwatch time {1} ms", cudaTime, timer.Elapsed); int lenght = displayCount;// Math.Min(displayCount, Rows); Console.WriteLine(); for (int i = 0; i < lenght; i++) { Console.WriteLine("{0}-{1}", i, output[i]); } cuda.Free(AValsPtr); cuda.Free(AIdxPtr); cuda.Free(ALenghtPtr); cuda.Free(dOutput); cuda.DestroyEvent(start); cuda.DestroyEvent(end); cuda.DestroyStream(stream0); cuda.Free(mainVecPtr); cuda.DestroyTexture(cuTexRef); return(output); }
static void Main(string[] args) { // Create a new instance of CUDA class, select 1st device. CUDA cuda = new CUDA(0, true); // Prepare parameters. int n = 16 * 1024 * 1024; uint nbytes = (uint)(n * sizeof(int)); int value = 26; // allocate host memory int[] a = new int[n]; // allocate device memory CUdeviceptr d_a = cuda.Allocate <int>(a); CUDADriver.cuMemsetD8(d_a, 0xff, nbytes); // load module cuda.LoadModule(Path.Combine(Environment.CurrentDirectory, "asyncAPI.ptx")); CUfunction func = cuda.GetModuleFunction("increment_kernel"); // set kernel launch configuration cuda.SetFunctionBlockShape(func, 512, 1, 1); // create cuda event handles CUevent start = cuda.CreateEvent(); CUevent stop = cuda.CreateEvent(); // asynchronously issue work to the GPU (all to stream 0) CUstream stream = new CUstream(); cuda.RecordEvent(start); cuda.CopyHostToDeviceAsync <int>(d_a, a, stream); // set parameters for kernel function cuda.SetParameter(func, 0, (uint)d_a.Pointer); cuda.SetParameter(func, IntPtr.Size, (uint)value); cuda.SetParameterSize(func, (uint)(IntPtr.Size + 4)); // actually launch kernel cuda.LaunchAsync(func, n / 512, 1, stream); // wait for every thing to finish, then start copy back data cuda.CopyDeviceToHostAsync <int>(d_a, a, stream); cuda.RecordEvent(stop); // print the cpu and gpu times Console.WriteLine("time spent executing by the GPU: {0} ms", cuda.ElapsedTime(start, stop)); // check the output for correctness if (CorrectOutput(a, value)) { Console.WriteLine("Test PASSED"); } else { Console.WriteLine("Test FAILED"); } // release resources cuda.DestroyEvent(start); cuda.DestroyEvent(stop); cuda.Free(d_a); }