public static bool GenerateRevolvedShapeAsset(CSGBrushMeshAsset brushMeshAsset, CSGRevolvedShapeDefinition definition) { definition.Validate(); var surfaces = definition.surfaceAssets; var descriptions = definition.surfaceDescriptions; var shapeVertices = new List <Vector2>(); var shapeSegmentIndices = new List <int>(); GetPathVertices(definition.shape, definition.curveSegments, shapeVertices, shapeSegmentIndices); Vector2[][] polygonVerticesArray; int[][] polygonIndicesArray; if (!Decomposition.ConvexPartition(shapeVertices, shapeSegmentIndices, out polygonVerticesArray, out polygonIndicesArray)) { brushMeshAsset.Clear(); return(false); } // TODO: splitting it before we do the composition would be better var polygonVerticesList = polygonVerticesArray.ToList(); for (int i = polygonVerticesList.Count - 1; i >= 0; i--) { SplitPolygon(polygonVerticesList, i); } var subMeshes = new List <CSGBrushSubMesh>(); var horzSegments = definition.revolveSegments; //horizontalSegments; var horzDegreePerSegment = definition.totalAngle / horzSegments; // TODO: make this work when intersecting rotation axis // 1. split polygons along rotation axis // 2. if edge lies on rotation axis, make sure we don't create infinitely thin quad // collapse this quad, or prevent this from happening // TODO: share this code with torus generator for (int p = 0; p < polygonVerticesList.Count; p++) { var polygonVertices = polygonVerticesList[p]; // var segmentIndices = polygonIndicesArray[p]; var shapeSegments = polygonVertices.Length; var vertSegments = polygonVertices.Length; var descriptionIndex = new int[2 + vertSegments]; descriptionIndex[0] = 0; descriptionIndex[1] = 1; for (int v = 0; v < vertSegments; v++) { descriptionIndex[v + 2] = 2; } var horzOffset = definition.startAngle; for (int h = 1, pr = 0; h < horzSegments + 1; pr = h, h++) { var hDegree0 = (pr * horzDegreePerSegment) + horzOffset; var hDegree1 = (h * horzDegreePerSegment) + horzOffset; var rotation0 = Quaternion.AngleAxis(hDegree0, Vector3.forward); var rotation1 = Quaternion.AngleAxis(hDegree1, Vector3.forward); var subMeshVertices = new Vector3[vertSegments * 2]; for (int v = 0; v < vertSegments; v++) { subMeshVertices[v + vertSegments] = rotation0 * new Vector3(polygonVertices[v].x, 0, polygonVertices[v].y); subMeshVertices[v] = rotation1 * new Vector3(polygonVertices[v].x, 0, polygonVertices[v].y); } var subMesh = new CSGBrushSubMesh(); if (!CreateExtrudedSubMesh(subMesh, vertSegments, descriptionIndex, descriptionIndex, 0, 1, subMeshVertices, surfaces, descriptions)) { continue; } if (!subMesh.Validate()) { brushMeshAsset.Clear(); return(false); } subMeshes.Add(subMesh); } } brushMeshAsset.SubMeshes = subMeshes.ToArray(); brushMeshAsset.CalculatePlanes(); brushMeshAsset.SetDirty(); return(true); }
public static bool GenerateTorusAsset(CSGBrushMeshAsset brushMeshAsset, CSGTorusDefinition definition) { Vector3[] vertices = null; if (!GenerateTorusVertices(definition, ref vertices)) { brushMeshAsset.Clear(); return(false); } definition.Validate(); var surfaces = definition.surfaceAssets; var descriptions = definition.surfaceDescriptions; var tubeRadiusX = (definition.tubeWidth * 0.5f); var tubeRadiusY = (definition.tubeHeight * 0.5f); var torusRadius = (definition.outerDiameter * 0.5f) - tubeRadiusX; var horzSegments = definition.horizontalSegments; var vertSegments = definition.verticalSegments; var horzDegreePerSegment = (definition.totalAngle / horzSegments); var vertDegreePerSegment = (360.0f / vertSegments) * Mathf.Deg2Rad; var descriptionIndex = new int[2 + vertSegments]; descriptionIndex[0] = 0; descriptionIndex[1] = 1; var circleVertices = new Vector2[vertSegments]; var min = new Vector2(float.PositiveInfinity, float.PositiveInfinity); var max = new Vector2(float.NegativeInfinity, float.NegativeInfinity); var tubeAngleOffset = ((((vertSegments & 1) == 1) ? 0.0f : ((360.0f / vertSegments) * 0.5f)) + definition.tubeRotation) * Mathf.Deg2Rad; for (int v = 0; v < vertSegments; v++) { var vRad = tubeAngleOffset + (v * vertDegreePerSegment); circleVertices[v] = new Vector2((Mathf.Cos(vRad) * tubeRadiusX) - torusRadius, (Mathf.Sin(vRad) * tubeRadiusY)); min.x = Mathf.Min(min.x, circleVertices[v].x); min.y = Mathf.Min(min.y, circleVertices[v].y); max.x = Mathf.Max(max.x, circleVertices[v].x); max.y = Mathf.Max(max.y, circleVertices[v].y); descriptionIndex[v + 2] = 2; } if (definition.fitCircle) { var center = (max + min) * 0.5f; var size = (max - min) * 0.5f; size.x = tubeRadiusX / size.x; size.y = tubeRadiusY / size.y; for (int v = 0; v < vertSegments; v++) { circleVertices[v].x = (circleVertices[v].x - center.x) * size.x; circleVertices[v].y = (circleVertices[v].y - center.y) * size.y; circleVertices[v].x -= torusRadius; } } var subMeshes = new CSGBrushSubMesh[horzSegments]; var horzOffset = definition.startAngle; for (int h = 1, p = 0; h < horzSegments + 1; p = h, h++) { var hDegree0 = (p * horzDegreePerSegment) + horzOffset; var hDegree1 = (h * horzDegreePerSegment) + horzOffset; var rotation0 = Quaternion.AngleAxis(hDegree0, Vector3.up); var rotation1 = Quaternion.AngleAxis(hDegree1, Vector3.up); var subMeshVertices = new Vector3[vertSegments * 2]; for (int v = 0; v < vertSegments; v++) { subMeshVertices[v + vertSegments] = rotation0 * circleVertices[v]; subMeshVertices[v] = rotation1 * circleVertices[v]; } var subMesh = new CSGBrushSubMesh(); CreateExtrudedSubMesh(subMesh, vertSegments, descriptionIndex, descriptionIndex, 0, 1, subMeshVertices, surfaces, descriptions); if (!subMesh.Validate()) { brushMeshAsset.Clear(); return(false); } subMeshes[h - 1] = subMesh; } brushMeshAsset.SubMeshes = subMeshes; brushMeshAsset.CalculatePlanes(); brushMeshAsset.SetDirty(); return(true); }