public void FitsAtSamplePoints() { IInterpolation it = Barycentric.InterpolatePolynomialEquidistant(Tmin, Tmax, _y); for (int i = 0; i < _y.Length; i++) { Assert.AreEqual(_y[i], it.Interpolate(i), "A Exact Point " + i); } }
public void SupportsLinearCase(int samples) { double[] x, y, xtest, ytest; LinearInterpolationCase.Build(out x, out y, out xtest, out ytest, samples); IInterpolation it = Barycentric.InterpolatePolynomialEquidistant(x, y); for (int i = 0; i < xtest.Length; i++) { Assert.AreEqual(ytest[i], it.Interpolate(xtest[i]), 1e-12, "Linear with {0} samples, sample {1}", samples, i); } }
/// <summary> /// Create a barycentric polynomial interpolation where the given sample points are equidistant. /// </summary> /// <param name="points">The sample points t, must be equidistant.</param> /// <param name="values">The sample point values x(t).</param> /// <returns> /// An interpolation scheme optimized for the given sample points and values, /// which can then be used to compute interpolations and extrapolations /// on arbitrary points. /// </returns> /// <remarks> /// if your data is already sorted in arrays, consider to use /// MathNet.Numerics.Interpolation.Barycentric.InterpolatePolynomialEquidistantSorted /// instead, which is more efficient. /// </remarks> public static IInterpolation PolynomialEquidistant(IEnumerable <double> points, IEnumerable <double> values) { return(Barycentric.InterpolatePolynomialEquidistant(points, values)); }
public void FitsAtArbitraryPoints(double t, double x, double maxAbsoluteError) { IInterpolation it = Barycentric.InterpolatePolynomialEquidistant(Tmin, Tmax, _y); Assert.AreEqual(x, it.Interpolate(t), maxAbsoluteError, "Interpolation at {0}", t); }
public void FewSamples() { Assert.That(() => Barycentric.InterpolatePolynomialEquidistant(new double[0], new double[0]), Throws.ArgumentException); Assert.That(Barycentric.InterpolatePolynomialEquidistant(new[] { 1.0 }, new[] { 2.0 }).Interpolate(1.0), Is.EqualTo(2.0)); }