public void TestGetOutputTensors2() { var model = ModelLoader.Load(discrete1vis0vec_2_3action_recurrModel); var outputNames = BarracudaModelParamLoader.GetOutputNames(model); Assert.Contains(TensorNames.ActionOutput, outputNames); // TODO : There are some memory tensors as well }
public void TestGetOutputTensors1() { var model = ModelLoader.Load(continuous2vis8vec2actionModel); var outputNames = BarracudaModelParamLoader.GetOutputNames(model); Assert.Contains(TensorNames.ActionOutput, outputNames); Assert.AreEqual(1, outputNames.Count()); Assert.AreEqual(0, BarracudaModelParamLoader.GetOutputNames(null).Count()); }
/// <summary> /// Initializes the Brain with the Model that it will use when selecting actions for /// the agents /// </summary> /// <param name="seed"> The seed that will be used to initialize the RandomNormal /// and Multinomial obsjects used when running inference.</param> /// <exception cref="UnityAgentsException">Throws an error when the model is null /// </exception> public void ReloadModel(int seed = 0) { if (m_TensorAllocator == null) { m_TensorAllocator = new TensorCachingAllocator(); } if (model != null) { #if BARRACUDA_VERBOSE _verbose = true; #endif D.logEnabled = m_Verbose; // Cleanup previous instance if (m_Engine != null) { m_Engine.Dispose(); } m_BarracudaModel = ModelLoader.Load(model.Value); var executionDevice = inferenceDevice == InferenceDevice.GPU ? BarracudaWorkerFactory.Type.ComputePrecompiled : BarracudaWorkerFactory.Type.CSharp; m_Engine = BarracudaWorkerFactory.CreateWorker(executionDevice, m_BarracudaModel, m_Verbose); } else { m_BarracudaModel = null; m_Engine = null; } m_ModelParamLoader = BarracudaModelParamLoader.GetLoaderAndCheck(m_Engine, m_BarracudaModel, brainParameters); m_InferenceInputs = m_ModelParamLoader.GetInputTensors(); m_OutputNames = m_ModelParamLoader.GetOutputNames(); m_TensorGenerator = new TensorGenerator(brainParameters, seed, m_TensorAllocator, m_BarracudaModel); m_TensorApplier = new TensorApplier(brainParameters, seed, m_TensorAllocator, m_BarracudaModel); }