public void TestCommonDemoCases() { var mlContext = new MLContext(0); var trainingService = new BankTransactionTrainingService(mlContext); string trainingDataFile = Path.Combine(AppContext.BaseDirectory, "Data/training.json"); var trainingData = JsonConvert.DeserializeObject <List <Transaction> >(File.ReadAllText(trainingDataFile)); var mlModel = trainingService.ManualTrain(trainingData); var labelService = new BankTransactionLabelService(mlContext); labelService.LoadModel(mlModel); TestModel(labelService); }
public void TestLoadingMLModel() { var mlContext = new MLContext(0); var trainingService = new BankTransactionTrainingService(mlContext); string modelFile = Path.Combine(AppContext.BaseDirectory, $"{Guid.NewGuid()}.zip"); string trainingDataFile = Path.Combine(AppContext.BaseDirectory, "Data/training.json"); var trainingData = JsonConvert.DeserializeObject <List <Transaction> >(File.ReadAllText(trainingDataFile)); var model = trainingService.ManualTrain(trainingData); trainingService.SaveModel(modelFile, model); var labelService = new BankTransactionLabelService(mlContext); labelService.LoadModelFromFile(modelFile); TestModel(labelService); File.Delete(modelFile); }
public static void Main(string[] args) { bool doTraining = !args.Any(arg => arg.Equals("no-training", StringComparison.OrdinalIgnoreCase)); bool useAutoTrain = args.Any(arg => arg.Equals("auto-ml", StringComparison.OrdinalIgnoreCase)); var mlContext = new MLContext(); // Training is optional as long it's done at least once. if (doTraining) { string trainingDataFile = Path.Combine(AppContext.BaseDirectory, "Data/training.json"); // Some manually chosen transactions with some modifications. Console.WriteLine("Loading training data..."); IEnumerable <Transaction> trainingData = GetTrainingData(trainingDataFile); Console.WriteLine("Training the model..."); var trainingService = new BankTransactionTrainingService(mlContext); var timer = Stopwatch.StartNew(); ITransformer model = useAutoTrain ? trainingService.AutoTrain(trainingData, 15) : trainingService.ManualTrain(trainingData); trainingService.SaveModel("Model.zip", model); timer.Stop(); Console.WriteLine($"Training done in {Math.Round(timer.Elapsed.TotalSeconds, 2)} seconds"); Console.WriteLine(); } Console.WriteLine("Prepare transaction labeler..."); string modelFile = Path.Combine(AppContext.BaseDirectory, "Model.zip"); var labelService = new BankTransactionLabelService(mlContext); labelService.LoadModelFromFile(modelFile); Console.WriteLine("Predict some transactions based on their description and type..."); Console.WriteLine(); // Should be "coffee & tea". MakePrediction(labelService, "VISA DEBIT PURCHASE CARD 0012 AMERICAN CONCEPTS PT BRISBANE"); // Should be "coffee & tea". MakePrediction(labelService, "AMERICAN CONCEPTS PT BRISBANE"); // The number in the transaction is always random but it will work despite that. Result: rent MakePrediction(labelService, "ANZ M-BANKING PAYMENT TRANSFER 513542 TO SPIRE REALITY"); // In fact, searching just for part of the transaction will give us the same result. MakePrediction(labelService, "SPIRE REALITY"); // Should be "investment". MakePrediction(labelService, "VISA DEBIT PURCHASE CARD 0012 DOTNETFOUNDATION.ORG 42553885334 10.00 USD INC O/S FEE $0.42"); // Should be "investment". MakePrediction(labelService, "VISA DEBIT PURCHASE CARD 0012 DOTNETFOUNDATION.ORG 334634543 10.00 USD INC O/S FEE $0.12"); // Will likely fail. MakePrediction(labelService, "DOTNETFOUNDATION.ORG random text"); }