// LISTNET COMMAND public void ListNets() { if (network == null) { // NO NETWORK CREATED - CREATING NEW network = ANNetwork.NewNetwork(new int[] { 1 }, 1); } network.ShowFileList(); }
// LOAD NETWORK COMMAND public string LoadNetwork(string tmpString, ref ANNetwork externalNetworkLink) { if (network == null) { // NO NETWORK CREATED - CREATING NEW network = ANNetwork.NewNetwork(new int[] { 1 }, 1); externalNetworkLink = network; } string result = network.LoadFromFile(tmpString); if (result.Length > 0) { return(result); } return(""); }
////////// ******************************************************************************************************************************* ////////// ******************************************************************************************************************************* ////////// NETWORK FUNCTIONS // CREATE NEW NETWORK public string CreateNewANN(string tmpString, ref ANNetwork externalNetworkLink) { /* newANN <inputsNumber> <layersNumber> <L1NeuronNumber>... * (<alpha> <CostFunctionIndex> {<L1ActivationFunctionIndex>...} {<L1LowerBoundary>... <L1UpperBoundary>...} <scaleBoolean>)*/ bool isLast = true; string result = ""; // PARSING INPUTS NUMBER if (tmpString.Length == 0) { return("\n-> Error creating new network: no <inputsNumber> argument entered."); } int inputsNumber = -1; result = Parsing.ParseInt(ref tmpString, ref inputsNumber, ref isLast, "inputsNumber", Parsing.AfterParsingCheck.Positive); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if (isLast) { return("\n-> Error creating new network: no <layersNumber> argument entered."); } // PARSING LAYER NUMBER int layersNumber = -1; result = Parsing.ParseInt(ref tmpString, ref layersNumber, ref isLast, "inputsNumber", Parsing.AfterParsingCheck.Positive); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } // PARSING LAYER NEURONS NUMBER FOR EACH LAYER int[] neuronNumbers = new int[layersNumber]; for (int layerInd = 0; layerInd < layersNumber; layerInd++) { result = Parsing.ParseInt(ref tmpString, ref neuronNumbers[layerInd], ref isLast, "<LxNeuronNumber>", Parsing.AfterParsingCheck.Positive); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if ((isLast) && (layerInd < layersNumber - 1)) { return("\n-> Error creating new network: no <LxNeuronNumber> for layer " + layerInd.ToString() + " ."); } } if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber); externalNetworkLink = network; return(""); } // PARSING TRAINING SPEED IF ABLE float learningSpeed = -1; result = Parsing.ParseFloat(ref tmpString, ref learningSpeed, ref isLast, "trainingSpeed", Parsing.AfterParsingCheck.Positive); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed); externalNetworkLink = network; return(""); } // PARSING ALPHA IF ABLE float alpha = -1; result = Parsing.ParseFloat(ref tmpString, ref alpha, ref isLast, "alpha", Parsing.AfterParsingCheck.Positive); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed, alpha); externalNetworkLink = network; return(""); } // PARSING LYAMBDA IF ABLE float lyambda = -1; result = Parsing.ParseFloat(ref tmpString, ref lyambda, ref isLast, "lyambda", Parsing.AfterParsingCheck.NonNegative); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed, alpha, lyambda); externalNetworkLink = network; return(""); } // PARSING COST FUNCTION CFTypeBase CFType = null; result = Parsing.ParseCFType(ref tmpString, ref CFType, ref isLast); if (result.Length > 0) { return(result); } if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed, alpha, lyambda, CFType); externalNetworkLink = network; return(""); } // PARSING ACTIVATION FUNCTIONS FOR ALL LAYERS AFTypeBase[] AFTypes = new AFTypeBase[layersNumber]; result = Parsing.ParseAFTypesArray(ref tmpString, ref AFTypes, ref isLast); if (result.Length > 0) { return(result); } if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed, alpha, lyambda, CFType, AFTypes); externalNetworkLink = network; return(""); } // PARSING INIT SCALE bool initScale; int initScaleInt = -1; result = Parsing.ParseInt(ref tmpString, ref initScaleInt, ref isLast, "scaleBoolean", Parsing.AfterParsingCheck.NonNegative); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if ((initScaleInt != 0) && (initScaleInt != 1)) { return("\n-> Error creating new network: non-boolean initScale " + initScaleInt.ToString() + " ."); } initScale = initScaleInt == 0 ? false : true; if (isLast) { network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed, alpha, lyambda, CFType, AFTypes, initScale); externalNetworkLink = network; return(""); } // PARSING LOWER BOUNDARY AND UPPER BOUNDARY float[] lowerBoundaries = new float[layersNumber]; result = Parsing.ParseFloatArray(ref tmpString, ref lowerBoundaries, ref isLast, "lower boundaries", Parsing.AfterParsingCheck.NoCheck); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } if (isLast) { return("\n-> Error creating new network: no text for upper boundaties "); } float[] upperBoundaries = new float[layersNumber]; result = Parsing.ParseFloatArray(ref tmpString, ref upperBoundaries, ref isLast, "upper boundaries", Parsing.AfterParsingCheck.NoCheck); if (result.Length > 0) { return("\n-> Error creating new network. " + result); } network = ANNetwork.NewNetwork(neuronNumbers, inputsNumber, learningSpeed, alpha, lyambda, CFType, AFTypes, initScale, lowerBoundaries, upperBoundaries); externalNetworkLink = network; return(""); }