// Use this for initialization void Start() { ann = new ANN(3, learningRate, learningRateDecay, weightsDecay, neuronSpawner); ann.AddLayer(5, "LeakyReLU"); ann.AddLayer(10, "LeakyReLU"); ann.AddLayer(10, "LeakyReLU"); ann.AddLayer(5, "LeakyReLU"); ann.AddLayer(2, "Linear"); ann.loadBrain(); /* * List<double> target = new List<double>(); * target.Add(0.1f); target.Add(-0.1f); * List<double> input = new List<double>(); * input.Add(0.0f); input.Add(0.5f); input.Add(0.0f); * ann.Train(input, target); * input.Clear(); * input.Add(0.0f); input.Add(0.0f); input.Add(0.5f); * ann.Train(input, target); * input.Clear(); * input.Add(0.0f); input.Add(0.5f); input.Add(0.5f); * ann.Train(input, target); * * target.Clear(); * target.Add(-0.1f); target.Add(0.1f); * input.Clear(); * input.Add(0.0f); input.Add(-0.5f); input.Add(0.0f); * ann.Train(input, target); * input.Clear(); * input.Add(0.0f); input.Add(0.0f); input.Add(-0.5f); * ann.Train(input, target); * input.Clear(); * input.Add(0.0f); input.Add(0.5f); input.Add(-0.5f); * ann.Train(input, target); */ ballStartPos = ball.transform.position; Time.timeScale = 5.0f; }
// Use this for initialization void Start() { ann = new ANN(2, 0.1f, 1f, 0.0003f, neuronSpawner); ann.AddLayer(1, "Sigmoid"); }
// Use this for initialization void Start() { ann = new ANN(2, 0.2f, 0.999f, 0.0003f, neuronSpawner); ann.AddLayer(2, "LeakyReLU"); ann.AddLayer(1, "Sigmoid"); }
// Use this for initialization void Start() { ann = new ANN(2, 0.8f, 0.999f, 0.0003f); ann.AddLayer(32, "LeakyReLU"); ann.AddLayer(1, "Sigmoid"); }