public static AAS2DCoordinate MoonPosition(DateTime dateTime)
        {
            dateTime = dateTime.ToUniversalTime(); // NOTE: time must be converted to Universal Time

            //Calculate the topocentric horizontal position of the Moon
            AASDate         dateMoonCalc = new AASDate(dateTime.Year, dateTime.Month, dateTime.Day, dateTime.Hour, dateTime.Minute, dateTime.Second, true);
            double          JDMoon       = dateMoonCalc.Julian + AASDynamicalTime.DeltaT(dateMoonCalc.Julian) / 86400.0;
            double          MoonLong     = AASMoon.EclipticLongitude(JDMoon);
            double          MoonLat      = AASMoon.EclipticLatitude(JDMoon);
            AAS2DCoordinate Equatorial   = AASCoordinateTransformation.Ecliptic2Equatorial(MoonLong, MoonLat, AASNutation.TrueObliquityOfEcliptic(JDMoon));
            double          MoonRad      = AASMoon.RadiusVector(JDMoon);

            MoonRad /= 149597870.691; //Convert KM to AU
            AAS2DCoordinate MoonTopo = AASParallax.Equatorial2Topocentric(Equatorial.X, Equatorial.Y, MoonRad, RT_LONG, RT_LAT, RT_HEIGHT, JDMoon);
            double          AST      = AASSidereal.ApparentGreenwichSiderealTime(dateMoonCalc.Julian);
            double          LongtitudeAsHourAngle = AASCoordinateTransformation.DegreesToHours(RT_LONG);
            double          LocalHourAngle        = AST - LongtitudeAsHourAngle - MoonTopo.X;
            AAS2DCoordinate MoonHorizontal        = AASCoordinateTransformation.Equatorial2Horizontal(LocalHourAngle, MoonTopo.Y, RT_LAT);

            MoonHorizontal.Y += AASRefraction.RefractionFromTrue(MoonHorizontal.Y, 1013, 10);

            //The result above should be that we have a rising Moon at Y degrees above the horizon at azimuth X degrees east of the southern horizon
            //NOTE: for azimuth west is considered positive, to get east as positive subtract the result from 360
            return(MoonHorizontal);
        }
示例#2
0
        public void Equatorial2TopocentricDeltaTest(double alpha, double delta, double distance, double longitude, double latitude, double height, double jd, double expectedX, double expectedY)
        {
            AAS2DCoordinate topocentricDelta = AASParallax.Equatorial2TopocentricDelta(alpha, delta, distance, longitude, latitude, height, jd);

            Assert.Equal(expectedX, topocentricDelta.X);
            Assert.Equal(expectedY, topocentricDelta.Y);
        }
        public static AAS2DCoordinate SunPosition(DateTime dateTime)
        {
            var bHighPrecision = false;

            dateTime = dateTime.ToUniversalTime(); // NOTE: time must be converted to Universal Time

            //Calculate the topocentric horizontal position of the Sun
            AASDate         dateSunCalc           = new AASDate(dateTime.Year, dateTime.Month, dateTime.Day, dateTime.Hour, dateTime.Minute, dateTime.Second, true);
            double          JDSun                 = dateSunCalc.Julian + AASDynamicalTime.DeltaT(dateSunCalc.Julian) / 86400.0;
            double          SunLong               = AASSun.ApparentEclipticLongitude(JDSun, bHighPrecision);
            double          SunLat                = AASSun.ApparentEclipticLatitude(JDSun, bHighPrecision);
            AAS2DCoordinate Equatorial            = AASCoordinateTransformation.Ecliptic2Equatorial(SunLong, SunLat, AASNutation.TrueObliquityOfEcliptic(JDSun));
            double          SunRad                = AASEarth.RadiusVector(JDSun, bHighPrecision);
            AAS2DCoordinate SunTopo               = AASParallax.Equatorial2Topocentric(Equatorial.X, Equatorial.Y, SunRad, RT_LONG, RT_LAT, RT_HEIGHT, JDSun);
            double          AST                   = AASSidereal.ApparentGreenwichSiderealTime(dateSunCalc.Julian);
            double          LongtitudeAsHourAngle = AASCoordinateTransformation.DegreesToHours(RT_LONG);
            double          LocalHourAngle        = AST - LongtitudeAsHourAngle - SunTopo.X;
            AAS2DCoordinate SunHorizontal         = AASCoordinateTransformation.Equatorial2Horizontal(LocalHourAngle, SunTopo.Y, RT_LAT);

            SunHorizontal.Y += AASRefraction.RefractionFromTrue(SunHorizontal.Y, 1013, 10);

            //The result above should be that we have a setting Sun at Y degrees above the horizon at azimuth X degrees south of the westerly horizon
            //NOTE: for azimuth west is considered positive, to get east as positive subtract the result from 360
            return(SunHorizontal);
        }
示例#4
0
        public void Ecliptic2TopocentricTest(double lambda, double beta, double semidiameter, double distance, double epsilon, double latitude, double height, double jd, double expectedLambda, double expectedBeta, double expectedSemidiameter)
        {
            AASTopocentricEclipticDetails parallax = AASParallax.Ecliptic2Topocentric(lambda, beta, semidiameter, distance, epsilon, latitude, height, jd);

            Assert.Equal(expectedLambda, parallax.Lambda);
            Assert.Equal(expectedBeta, parallax.Beta);
            Assert.Equal(expectedSemidiameter, parallax.Semidiameter);
        }
        public Coordinate GetSunCoordinate(DateTime datetime)
        {
            AASDate date    = new AASDate(datetime.Year, datetime.Month, datetime.Day, datetime.Hour, datetime.Minute, datetime.Second, true);
            double  JD      = date.Julian + AASDynamicalTime.DeltaT(date.Julian) / 86400.0;
            double  SunLong = AASSun.ApparentEclipticLongitude(JD, false);
            double  SunLat  = AASSun.ApparentEclipticLatitude(JD, false);

            AAS2DCoordinate equatorial = AASCoordinateTransformation.Ecliptic2Equatorial(SunLong, SunLat, AASNutation.TrueObliquityOfEcliptic(JD));
            double          SunRad     = AASEarth.RadiusVector(JD, false);

            // This line gives us RA & Declination.
            AAS2DCoordinate SunTopo = AASParallax.Equatorial2Topocentric(equatorial.X, equatorial.Y, SunRad, Location.Longitude, Location.Latitude, Location.Altitude, JD);

            return(new Coordinate(SunTopo.X, SunTopo.Y));
        }
        public Coordinate GetMoonCoordinate(DateTime datetime)
        {
            AASDate date     = new AASDate(datetime.Year, datetime.Month, datetime.Day, datetime.Hour, datetime.Minute, datetime.Second, true);
            double  JD       = date.Julian + AASDynamicalTime.DeltaT(date.Julian) / 86400.0;
            double  MoonLong = AASMoon.EclipticLongitude(JD);
            double  MoonLat  = AASMoon.EclipticLatitude(JD);

            AAS2DCoordinate Equatorial = AASCoordinateTransformation.Ecliptic2Equatorial(MoonLong, MoonLat, AASNutation.TrueObliquityOfEcliptic(JD));
            double          MoonRad    = AASMoon.RadiusVector(JD);

            MoonRad /= 149597870.691; //Convert KM to AU

            AAS2DCoordinate MoonTopo = AASParallax.Equatorial2Topocentric(Equatorial.X, Equatorial.Y, MoonRad, Location.Longitude, Location.Latitude, Location.Altitude, JD);

            return(new Coordinate(MoonTopo.X, MoonTopo.Y));
        }
示例#7
0
        public void DistanceToParallaxTest(double distance, double expectedParallax)
        {
            double parallax = AASParallax.DistanceToParallax(distance);

            Assert.Equal(expectedParallax, parallax);
        }
示例#8
0
        public void ParallaxToDistanceTest(double parallax, double expectedDistance)
        {
            double distance = AASParallax.ParallaxToDistance(parallax);

            Assert.Equal(expectedDistance, distance);
        }