Пример #1
0
 public RandomizedTrainer(SimpleNeuralNetworkFactory factory, double[][][] trainingData, ILogger <RandomizedTrainer> logger)
 {
     // todo: consider going back to double[,,,]
     TrainingData        = trainingData;
     NumberOfDataSets    = trainingData.Length;
     NumberOfInputs      = trainingData[0].Length;
     NumberOfOutputs     = trainingData[0][0].Length;
     NumberOfHiddenNodes = 4;
     Factory             = factory;
     Logger = logger;
 }
Пример #2
0
        public static void Main(string[] args)
        {
            //#error version

            var data = new double[3][][];

            for (var x = 0; x < data.Length; x++)
            {
                data[x] = new double[][] { new double[] { x }, new double[] { x *2 } };
            }
            var loggerFactory = LoggerFactory.Create(x =>
            {
                x.AddConsole();
                x.SetMinimumLevel(LogLevel.Debug);
            });
            var factory = new SimpleNeuralNetworkFactory(1234);
            var trainer = new RandomizedTrainer(factory, data, loggerFactory.CreateLogger <RandomizedTrainer>());

            for (var x = 0; x < 5; x++)
            {
                trainer.Train();
                Console.WriteLine($"epoch {x}: {trainer.BestError}");
            }
            //	{5,5},
            //{-6,-6}
            //};

            //var data = new double[,]
            //{
            //{1,1},
            //{5,5},
            //{-6,-6}
            //};

            //for (var x = 0; x < data.GetLength(0); x++)
            //{
            //var output = nn.run(data[x, 0]);
            //var delta = data[x, 1] - output[0];
            //Console.WriteLine($"[ {data[x, 0]} -> {output[0]}, {delta} ]");
            ////foreach (var o in output)
            ////{
            ////Console.Write(o + " ");
            ////}
            //// Console.WriteLine("]");
            //}
        }