Пример #1
0
		/// <summary>
		/// Probabilistic prime test based on Fermat's little theorem
		//
		// for any a < p (p does not divide a) if
		//      a^(p-1) mod p != 1 then p is not prime.
		//
		// Otherwise, p is probably prime (pseudoprime to the chosen base).
		/// </summary>
		/// <remarks>
		/// this method is fast but fails for Carmichael numbers except
		/// when the randomly chosen base is a factor of the number.
		/// </remarks>
		/// <param name="confidence">The confidence.</param>
		/// <returns>True if "this" is a pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.</returns>
		public bool FermatLittleTest(int confidence)
		{
			BigInteger thisVal;
			if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
				thisVal = -this;
			else
				thisVal = this;

			if (thisVal.dataLength == 1)
			{
				// test small numbers
				if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
					return false;
				else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
					return true;
			}

			if ((thisVal.data[0] & 0x1) == 0)     // even numbers
				return false;

			int bits = thisVal.bitCount();
			BigInteger a = new BigInteger();
			BigInteger p_sub1 = thisVal - (new BigInteger(1));
			Random rand = new Random();

			for (int round = 0; round < confidence; round++)
			{
				bool done = false;

				while (!done)		// generate a < n
				{
					int testBits = 0;

					// make sure "a" has at least 2 bits
					while (testBits < 2)
						testBits = (int)(rand.NextDouble() * bits);

					a.genRandomBits(testBits, rand);

					int byteLen = a.dataLength;

					// make sure "a" is not 0
					if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
						done = true;
				}

				// check whether a factor exists (fix for version 1.03)
				BigInteger gcdTest = a.gcd(thisVal);
				if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
					return false;

				// calculate a^(p-1) mod p
				BigInteger expResult = a.modPow(p_sub1, thisVal);

				int resultLen = expResult.dataLength;

				// is NOT prime is a^(p-1) mod p != 1

				if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
				{
					//Console.WriteLine("a = " + a.ToString());
					return false;
				}
			}

			return true;
		}
Пример #2
0
		/// <summary>
		/// Overloading of unary >> operators
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <param name="shiftVal">The shift val.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator >>(BigInteger bi1, int shiftVal)
		{
			BigInteger result = new BigInteger(bi1);
			result.dataLength = shiftRight(result.data, shiftVal);


			if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative
			{
				for (int i = maxLength - 1; i >= result.dataLength; i--)
					result.data[i] = 0xFFFFFFFF;

				uint mask = 0x80000000;
				for (int i = 0; i < 32; i++)
				{
					if ((result.data[result.dataLength - 1] & mask) != 0)
						break;

					result.data[result.dataLength - 1] |= mask;
					mask >>= 1;
				}
				result.dataLength = maxLength;
			}

			return result;
		}
Пример #3
0
		/// <summary>
		/// Implements the operator -.
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator -(BigInteger bi1)
		{
			// handle neg of zero separately since it'll cause an overflow
			// if we proceed.

			if (bi1.dataLength == 1 && bi1.data[0] == 0)
				return (new BigInteger());

			BigInteger result = new BigInteger(bi1);

			// 1's complement
			for (int i = 0; i < maxLength; i++)
				result.data[i] = (uint)(~(bi1.data[i]));

			// add one to result of 1's complement
			long val, carry = 1;
			int index = 0;

			while (carry != 0 && index < maxLength)
			{
				val = (long)(result.data[index]);
				val++;

				result.data[index] = (uint)(val & 0xFFFFFFFF);
				carry = val >> 32;

				index++;
			}

			if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
				throw (new ArithmeticException("Overflow in negation.\n"));

			result.dataLength = maxLength;

			while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
				result.dataLength--;
			return result;
		}
Пример #4
0
		/// <summary>
		/// Implements the operator -.
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <param name="bi2">The bi2.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
		{
			BigInteger result = new BigInteger();

			result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

			long carryIn = 0;
			for (int i = 0; i < result.dataLength; i++)
			{
				long diff;

				diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
				result.data[i] = (uint)(diff & 0xFFFFFFFF);

				if (diff < 0)
					carryIn = 1;
				else
					carryIn = 0;
			}

			// roll over to negative
			if (carryIn != 0)
			{
				for (int i = result.dataLength; i < maxLength; i++)
					result.data[i] = 0xFFFFFFFF;
				result.dataLength = maxLength;
			}

			// fixed in v1.03 to give correct datalength for a - (-b)
			while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
				result.dataLength--;

			// overflow check

			int lastPos = maxLength - 1;
			if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
			   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
			{
				throw (new ArithmeticException());
			}

			return result;
		}
Пример #5
0
		/// <summary>
		/// Implements the operator *.
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <param name="bi2">The bi2.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
		{
			int lastPos = maxLength - 1;
			bool bi1Neg = false, bi2Neg = false;

			// take the absolute value of the inputs
			try
			{
				if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
				{
					bi1Neg = true; bi1 = -bi1;
				}
				if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
				{
					bi2Neg = true; bi2 = -bi2;
				}
			}
			catch (Exception) { }

			BigInteger result = new BigInteger();

			// multiply the absolute values
			try
			{
				for (int i = 0; i < bi1.dataLength; i++)
				{
					if (bi1.data[i] == 0) continue;

					ulong mcarry = 0;
					for (int j = 0, k = i; j < bi2.dataLength; j++, k++)
					{
						// k = i + j
						ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
									 (ulong)result.data[k] + mcarry;

						result.data[k] = (uint)(val & 0xFFFFFFFF);
						mcarry = (val >> 32);
					}

					if (mcarry != 0)
						result.data[i + bi2.dataLength] = (uint)mcarry;
				}
			}
			catch (Exception)
			{
				throw (new ArithmeticException("Multiplication overflow."));
			}


			result.dataLength = bi1.dataLength + bi2.dataLength;
			if (result.dataLength > maxLength)
				result.dataLength = maxLength;

			while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
				result.dataLength--;

			// overflow check (result is -ve)
			if ((result.data[lastPos] & 0x80000000) != 0)
			{
				if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000)    // different sign
				{
					// handle the special case where multiplication produces
					// a max negative number in 2's complement.

					if (result.dataLength == 1)
						return result;
					else
					{
						bool isMaxNeg = true;
						for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
						{
							if (result.data[i] != 0)
								isMaxNeg = false;
						}

						if (isMaxNeg)
							return result;
					}
				}

				throw (new ArithmeticException("Multiplication overflow."));
			}

			// if input has different signs, then result is -ve
			if (bi1Neg != bi2Neg)
				return -result;

			return result;
		}
Пример #6
0
		/// <summary>
		/// Tests the correct implementation of the modulo exponential and
		/// inverse modulo functions using RSA encryption and decryption.  The two
		/// pseudoprimes p and q are fixed, but the two RSA keys are generated
		/// for each round of testing.
		///  </summary>
		/// <param name="rounds">The rounds.</param>
		public static void RSATest2(int rounds)
		{
			Random rand = new Random();
			byte[] val = new byte[64];

			byte[] pseudoPrime1 = {
                        (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
                        (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
                        (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
                        (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
                        (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
                        (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
                        (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
                        (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
                        (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
                        (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
                        (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
                };

			byte[] pseudoPrime2 = {
                        (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
                        (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
                        (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
                        (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
                        (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
                        (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
                        (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
                        (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
                        (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
                        (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
                        (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
                };


			BigInteger bi_p = new BigInteger(pseudoPrime1);
			BigInteger bi_q = new BigInteger(pseudoPrime2);
			BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
			BigInteger bi_n = bi_p * bi_q;

			for (int count = 0; count < rounds; count++)
			{
				// generate private and public key
				BigInteger bi_e = bi_pq.genCoPrime(512, rand);
				BigInteger bi_d = bi_e.modInverse(bi_pq);

				Console.WriteLine("\ne =\n" + bi_e.ToString(10));
				Console.WriteLine("\nd =\n" + bi_d.ToString(10));
				Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}

		}
Пример #7
0
		/// <summary>
		/// Implements the operator +.
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <param name="bi2">The bi2.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
		{
			BigInteger result = new BigInteger();

			result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

			long carry = 0;
			for (int i = 0; i < result.dataLength; i++)
			{
				long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
				carry = sum >> 32;
				result.data[i] = (uint)(sum & 0xFFFFFFFF);
			}

			if (carry != 0 && result.dataLength < maxLength)
			{
				result.data[result.dataLength] = (uint)(carry);
				result.dataLength++;
			}

			while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
				result.dataLength--;


			// overflow check
			int lastPos = maxLength - 1;
			if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
			   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
			{
				throw (new ArithmeticException());
			}

			return result;
		}
Пример #8
0
		/// <summary>
		/// Generates a random positive BigInteger with the specified number of bits such that gcd(number, this) = 1 
		/// </summary>
		/// <param name="bits">The bits.</param>
		/// <param name="rand">The rand.</param>
		/// <returns></returns>
		public BigInteger genCoPrime(int bits, Random rand)
		{
			bool done = false;
			BigInteger result = new BigInteger();

			while (!done)
			{
				result.genRandomBits(bits, rand);
				//Console.WriteLine(result.ToString(16));

				// gcd test
				BigInteger g = result.gcd(this);
				if (g.dataLength == 1 && g.data[0] == 1)
					done = true;
			}

			return result;
		}
Пример #9
0
		/// <summary>
		/// Returns the modulo inverse of this.  
		/// The modulus inverse is defined as the unique number x such that (this * x) mod modulus = 1
		/// </summary>
		/// <exception cref="ArithmeticException">
		/// Throws ArithmeticException ifthe inverse does not exist.  (i.e. gcd(this, modulus) != 1).
		/// </exception>
		/// <param name="modulus">The modulus.</param>
		/// <returns></returns>
		public BigInteger modInverse(BigInteger modulus)
		{
			BigInteger[] p = { 0, 1 };
			BigInteger[] q = new BigInteger[2];    // quotients
			BigInteger[] r = { 0, 0 };             // remainders

			int step = 0;

			BigInteger a = modulus;
			BigInteger b = this;

			while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
			{
				BigInteger quotient = new BigInteger();
				BigInteger remainder = new BigInteger();

				if (step > 1)
				{
					BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
					p[0] = p[1];
					p[1] = pval;
				}

				if (b.dataLength == 1)
					singleByteDivide(a, b, quotient, remainder);
				else
					multiByteDivide(a, b, quotient, remainder);

				/*
				Console.WriteLine(quotient.dataLength);
				Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
								  b.ToString(10), quotient.ToString(10), remainder.ToString(10),
								  p[1].ToString(10));
				*/

				q[0] = q[1];
				r[0] = r[1];
				q[1] = quotient; r[1] = remainder;

				a = b;
				b = remainder;

				step++;
			}

			if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
				throw (new ArithmeticException("No inverse!"));

			BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);

			if ((result.data[maxLength - 1] & 0x80000000) != 0)
				result += modulus;  // get the least positive modulus

			return result;
		}
Пример #10
0
		/// <summary>
		/// Computes the Jacobi Symbol for a and b.
		/// </summary>
		/// <exception cref="ArgumentException">Throws ArgumentException if b is not odd.</exception>
		/// <param name="a">A.</param>
		/// <param name="b">The b.</param>
		/// <returns></returns>
		public static int Jacobi(BigInteger a, BigInteger b)
		{
			// Jacobi defined only for odd integers
			if ((b.data[0] & 0x1) == 0)
				throw (new ArgumentException("Jacobi defined only for odd integers."));

			if (a >= b) a %= b;
			if (a.dataLength == 1 && a.data[0] == 0) return 0;  // a == 0
			if (a.dataLength == 1 && a.data[0] == 1) return 1;  // a == 1

			if (a < 0)
			{
				if ((((b - 1).data[0]) & 0x2) == 0)       //if( (((b-1) >> 1).data[0] & 0x1) == 0)
					return Jacobi(-a, b);
				else
					return -Jacobi(-a, b);
			}

			int e = 0;
			for (int index = 0; index < a.dataLength; index++)
			{
				uint mask = 0x01;

				for (int i = 0; i < 32; i++)
				{
					if ((a.data[index] & mask) != 0)
					{
						index = a.dataLength;      // to break the outer loop
						break;
					}
					mask <<= 1;
					e++;
				}
			}

			BigInteger a1 = a >> e;

			int s = 1;
			if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
				s = -1;

			if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
				s = -s;

			if (a1.dataLength == 1 && a1.data[0] == 1)
				return s;
			else
				return (s * Jacobi(b % a1, a1));
		}
Пример #11
0
		/// <summary>
		/// Generates a random positive BigInteger with the specified number of bits and is possibly prime.
		/// </summary>
		/// <param name="bits">The bits.</param>
		/// <param name="confidence">The confidence.</param>
		/// <param name="rand">The rand.</param>
		/// <returns></returns>
		public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
		{
			BigInteger result = new BigInteger();
			bool done = false;

			while (!done)
			{
				result.genRandomBits(bits, rand);
				result.data[0] |= 0x01;		// make it odd

				// prime test
				done = result.isProbablePrime(confidence);
			}
			return result;
		}
Пример #12
0
		/// <summary>
		/// Private method called by the public LucasStrongTest method to perform a Lucas strong pseudoprime test on thisVal. 
		/// </summary>
		/// <param name="thisVal">The this val.</param>
		/// <returns></returns>
		private bool LucasStrongTestHelper(BigInteger thisVal)
		{
			// Do the test (selects D based on Selfridge)
			// Let D be the first element of the sequence
			// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
			// Let P = 1, Q = (1-D) / 4

			long D = 5, sign = -1, dCount = 0;
			bool done = false;

			while (!done)
			{
				int Jresult = BigInteger.Jacobi(D, thisVal);

				if (Jresult == -1)
					done = true;    // J(D, this) = 1
				else
				{
					if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
						return false;

					if (dCount == 20)
					{
						// check for square
						BigInteger root = thisVal.sqrt();
						if (root * root == thisVal)
							return false;
					}

					//Console.WriteLine(D);
					D = (Math.Abs(D) + 2) * sign;
					sign = -sign;
				}
				dCount++;
			}

			long Q = (1 - D) >> 2;

			/*
			Console.WriteLine("D = " + D);
			Console.WriteLine("Q = " + Q);
			Console.WriteLine("(n,D) = " + thisVal.gcd(D));
			Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
			Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
			*/

			BigInteger p_add1 = thisVal + 1;
			int s = 0;

			for (int index = 0; index < p_add1.dataLength; index++)
			{
				uint mask = 0x01;

				for (int i = 0; i < 32; i++)
				{
					if ((p_add1.data[index] & mask) != 0)
					{
						index = p_add1.dataLength;      // to break the outer loop
						break;
					}
					mask <<= 1;
					s++;
				}
			}

			BigInteger t = p_add1 >> s;

			// calculate constant = b^(2k) / m
			// for Barrett Reduction
			BigInteger constant = new BigInteger();

			int nLen = thisVal.dataLength << 1;
			constant.data[nLen] = 0x00000001;
			constant.dataLength = nLen + 1;

			constant = constant / thisVal;

			BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
			bool isPrime = false;

			if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
			   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
			{
				// u(t) = 0 or V(t) = 0
				isPrime = true;
			}

			for (int i = 1; i < s; i++)
			{
				if (!isPrime)
				{
					// doubling of index
					lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
					lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

					//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

					if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
						isPrime = true;
				}

				lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
			}


			if (isPrime)     // additional checks for composite numbers
			{
				// If n is prime and gcd(n, Q) == 1, then
				// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

				BigInteger g = thisVal.gcd(Q);
				if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
				{
					if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
						lucas[2] += thisVal;

					BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
					if ((temp.data[maxLength - 1] & 0x80000000) != 0)
						temp += thisVal;

					if (lucas[2] != temp)
						isPrime = false;
				}
			}

			return isPrime;
		}
Пример #13
0
		/// <summary>
		/// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		///
		/// p is probably prime if for any a < p (a is not multiple of p),
		/// a^((p-1)/2) mod p = J(a, p)
		///
		/// where J is the Jacobi symbol.
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>True if "this" is a Euler pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		/// False if "this" is definitely NOT prime.</returns>
		public bool SolovayStrassenTest(int confidence)
		{
			BigInteger thisVal;
			if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
				thisVal = -this;
			else
				thisVal = this;

			if (thisVal.dataLength == 1)
			{
				// test small numbers
				if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
					return false;
				else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
					return true;
			}

			if ((thisVal.data[0] & 0x1) == 0)     // even numbers
				return false;


			int bits = thisVal.bitCount();
			BigInteger a = new BigInteger();
			BigInteger p_sub1 = thisVal - 1;
			BigInteger p_sub1_shift = p_sub1 >> 1;

			Random rand = new Random();

			for (int round = 0; round < confidence; round++)
			{
				bool done = false;

				while (!done)		// generate a < n
				{
					int testBits = 0;

					// make sure "a" has at least 2 bits
					while (testBits < 2)
						testBits = (int)(rand.NextDouble() * bits);

					a.genRandomBits(testBits, rand);

					int byteLen = a.dataLength;

					// make sure "a" is not 0
					if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
						done = true;
				}

				// check whether a factor exists (fix for version 1.03)
				BigInteger gcdTest = a.gcd(thisVal);
				if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
					return false;

				// calculate a^((p-1)/2) mod p

				BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
				if (expResult == p_sub1)
					expResult = -1;

				// calculate Jacobi symbol
				BigInteger jacob = Jacobi(a, thisVal);

				//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
				//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

				// if they are different then it is not prime
				if (expResult != jacob)
					return false;
			}

			return true;
		}
Пример #14
0
		/// <summary>
		/// Probabilistic prime test based on Rabin-Miller's
		///
		/// for any p > 0 with p - 1 = 2^s * t
		///
		/// p is probably prime (strong pseudoprime) if for any a < p,
		/// 1) a^t mod p = 1 or
		/// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>True if "this" is a strong pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		/// False if "this" is definitely NOT prime.</returns>
		public bool RabinMillerTest(int confidence)
		{
			BigInteger thisVal;
			if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
				thisVal = -this;
			else
				thisVal = this;

			if (thisVal.dataLength == 1)
			{
				// test small numbers
				if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
					return false;
				else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
					return true;
			}

			if ((thisVal.data[0] & 0x1) == 0)     // even numbers
				return false;


			// calculate values of s and t
			BigInteger p_sub1 = thisVal - (new BigInteger(1));
			int s = 0;

			for (int index = 0; index < p_sub1.dataLength; index++)
			{
				uint mask = 0x01;

				for (int i = 0; i < 32; i++)
				{
					if ((p_sub1.data[index] & mask) != 0)
					{
						index = p_sub1.dataLength;      // to break the outer loop
						break;
					}
					mask <<= 1;
					s++;
				}
			}

			BigInteger t = p_sub1 >> s;

			int bits = thisVal.bitCount();
			BigInteger a = new BigInteger();
			Random rand = new Random();

			for (int round = 0; round < confidence; round++)
			{
				bool done = false;

				while (!done)		// generate a < n
				{
					int testBits = 0;

					// make sure "a" has at least 2 bits
					while (testBits < 2)
						testBits = (int)(rand.NextDouble() * bits);

					a.genRandomBits(testBits, rand);

					int byteLen = a.dataLength;

					// make sure "a" is not 0
					if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
						done = true;
				}

				// check whether a factor exists (fix for version 1.03)
				BigInteger gcdTest = a.gcd(thisVal);
				if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
					return false;

				BigInteger b = a.modPow(t, thisVal);

				/*
				Console.WriteLine("a = " + a.ToString(10));
				Console.WriteLine("b = " + b.ToString(10));
				Console.WriteLine("t = " + t.ToString(10));
				Console.WriteLine("s = " + s);
				*/

				bool result = false;

				if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
					result = true;

				for (int j = 0; result == false && j < s; j++)
				{
					if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
					{
						result = true;
						break;
					}

					b = (b * b) % thisVal;
				}

				if (result == false)
					return false;
			}
			return true;
		}
Пример #15
0
		/// <summary>
		/// Tests the correct implementation of the /, %, * and + operators
		/// </summary>
		/// <param name="rounds">The rounds.</param>
		public static void MulDivTest(int rounds)
		{
			Random rand = new Random();
			byte[] val = new byte[64];
			byte[] val2 = new byte[64];

			for (int count = 0; count < rounds; count++)
			{
				// generate 2 numbers of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				int t2 = 0;
				while (t2 == 0)
					t2 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t2)
							val2[i] = (byte)(rand.NextDouble() * 256);
						else
							val2[i] = 0;

						if (val2[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);
				while (val2[0] == 0)
					val2[0] = (byte)(rand.NextDouble() * 256);

				Console.WriteLine(count);
				BigInteger bn1 = new BigInteger(val, t1);
				BigInteger bn2 = new BigInteger(val2, t2);


				// Determine the quotient and remainder by dividing
				// the first number by the second.

				BigInteger bn3 = bn1 / bn2;
				BigInteger bn4 = bn1 % bn2;

				// Recalculate the number
				BigInteger bn5 = (bn3 * bn2) + bn4;

				// Make sure they're the same
				if (bn5 != bn1)
				{
					Console.WriteLine("Error at " + count);
					Console.WriteLine(bn1 + "\n");
					Console.WriteLine(bn2 + "\n");
					Console.WriteLine(bn3 + "\n");
					Console.WriteLine(bn4 + "\n");
					Console.WriteLine(bn5 + "\n");
					return;
				}
			}
		}
Пример #16
0
		/// <summary>
		///Returns the k_th number in the Lucas Sequence reduced modulo n.
		///
		/// Uses index doubling to speed up the process.  For example, to calculate V(k),
		/// we maintain two numbers in the sequence V(n) and V(n+1).
		///
		/// To obtain V(2n), we use the identity
		///      V(2n) = (V(n) * V(n)) - (2 * Q^n)
		/// To obtain V(2n+1), we first write it as
		///      V(2n+1) = V((n+1) + n)
		/// and use the identity
		///      V(m+n) = V(m) * V(n) - Q * V(m-n)
		/// Hence,
		///      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
		///                   = V(n+1) * V(n) - Q^n * V(1)
		///                   = V(n+1) * V(n) - Q^n * P
		///
		/// We use k in its binary expansion and perform index doubling for each
		/// bit position.  For each bit position that is set, we perform an
		/// index doubling followed by an index addition.  This means that for V(n),
		/// we need to update it to V(2n+1).  For V(n+1), we need to update it to
		/// V((2n+1)+1) = V(2*(n+1))
		///
		/// This function returns
		/// [0] = U(k)
		/// [1] = V(k)
		/// [2] = Q^n
		///
		/// Where U(0) = 0 % n, U(1) = 1 % n
		///       V(0) = 2 % n, V(1) = P % n
		/// </summary>
		/// <param name="P">The P.</param>
		/// <param name="Q">The Q.</param>
		/// <param name="k">The k.</param>
		/// <param name="n">The n.</param>
		/// <returns></returns>
		public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
												 BigInteger k, BigInteger n)
		{
			if (k.dataLength == 1 && k.data[0] == 0)
			{
				BigInteger[] result = new BigInteger[3];

				result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
				return result;
			}

			// calculate constant = b^(2k) / m
			// for Barrett Reduction
			BigInteger constant = new BigInteger();

			int nLen = n.dataLength << 1;
			constant.data[nLen] = 0x00000001;
			constant.dataLength = nLen + 1;

			constant = constant / n;

			// calculate values of s and t
			int s = 0;

			for (int index = 0; index < k.dataLength; index++)
			{
				uint mask = 0x01;

				for (int i = 0; i < 32; i++)
				{
					if ((k.data[index] & mask) != 0)
					{
						index = k.dataLength;      // to break the outer loop
						break;
					}
					mask <<= 1;
					s++;
				}
			}

			BigInteger t = k >> s;

			//Console.WriteLine("s = " + s + " t = " + t);
			return LucasSequenceHelper(P, Q, t, n, constant, s);
		}
Пример #17
0
		/// <summary>
		///  Tests the correct implementation of the modulo exponential function
		/// using RSA encryption and decryption (using pre-computed encryption and
		/// decryption keys).
		/// </summary>
		/// <param name="rounds">The rounds.</param>
		public static void RSATest(int rounds)
		{
			Random rand = new Random(1);
			byte[] val = new byte[64];

			// private and public key
			BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
			BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
			BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);

			Console.WriteLine("e =\n" + bi_e.ToString(10));
			Console.WriteLine("\nd =\n" + bi_d.ToString(10));
			Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}

		}
Пример #18
0
		/// <summary>
		/// Performs the calculation of the kth term in the Lucas Sequence.
		/// For details of the algorithm, see reference [9].
		/// k must be odd.  i.e LSB == 1
		/// </summary>
		/// <param name="P">The P.</param>
		/// <param name="Q">The Q.</param>
		/// <param name="k">The k.</param>
		/// <param name="n">The n.</param>
		/// <param name="constant">The constant.</param>
		/// <param name="s">The s.</param>
		/// <returns></returns>
		private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
														BigInteger k, BigInteger n,
														BigInteger constant, int s)
		{
			BigInteger[] result = new BigInteger[3];

			if ((k.data[0] & 0x00000001) == 0)
				throw (new ArgumentException("Argument k must be odd."));

			int numbits = k.bitCount();
			uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

			// v = v0, v1 = v1, u1 = u1, Q_k = Q^0

			BigInteger v = 2 % n, Q_k = 1 % n,
					   v1 = P % n, u1 = Q_k;
			bool flag = true;

			for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
			{
				//Console.WriteLine("round");
				while (mask != 0)
				{
					if (i == 0 && mask == 0x00000001)        // last bit
						break;

					if ((k.data[i] & mask) != 0)             // bit is set
					{
						// index doubling with addition

						u1 = (u1 * v1) % n;

						v = ((v * v1) - (P * Q_k)) % n;
						v1 = n.BarrettReduction(v1 * v1, n, constant);
						v1 = (v1 - ((Q_k * Q) << 1)) % n;

						if (flag)
							flag = false;
						else
							Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

						Q_k = (Q_k * Q) % n;
					}
					else
					{
						// index doubling
						u1 = ((u1 * v) - Q_k) % n;

						v1 = ((v * v1) - (P * Q_k)) % n;
						v = n.BarrettReduction(v * v, n, constant);
						v = (v - (Q_k << 1)) % n;

						if (flag)
						{
							Q_k = Q % n;
							flag = false;
						}
						else
							Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
					}

					mask >>= 1;
				}
				mask = 0x80000000;
			}

			// at this point u1 = u(n+1) and v = v(n)
			// since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

			u1 = ((u1 * v) - Q_k) % n;
			v = ((v * v1) - (P * Q_k)) % n;
			if (flag)
				flag = false;
			else
				Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

			Q_k = (Q_k * Q) % n;


			for (int i = 0; i < s; i++)
			{
				// index doubling
				u1 = (u1 * v) % n;
				v = ((v * v) - (Q_k << 1)) % n;

				if (flag)
				{
					Q_k = Q % n;
					flag = false;
				}
				else
					Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
			}

			result[0] = u1;
			result[1] = v;
			result[2] = Q_k;

			return result;
		}
Пример #19
0
		/// <summary>
		/// Tests the correct implementation of sqrt() method.
		/// </summary>
		/// <param name="rounds">The rounds.</param>
		public static void SqrtTest(int rounds)
		{
			Random rand = new Random();
			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 1024);

				Console.Write("Round = " + count);

				BigInteger a = new BigInteger();
				a.genRandomBits(t1, rand);

				BigInteger b = a.sqrt();
				BigInteger c = (b + 1) * (b + 1);

				// check that b is the largest integer such that b*b <= a
				if (c <= a)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(a + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
Пример #20
0
		/// <summary>
		/// Raises the current number to the power specified.
		/// </summary>
		/// <param name="number">The number to be raised.</param>
		/// <param name="raisedTo">The power to be raised to.</param>
		/// <returns>
		/// A BigInteger representing this raised to a power
		/// </returns>
		public static BigInteger Pow(BigInteger number, BigInteger raisedTo)
		{
			return number.Pow(raisedTo);
		}
Пример #21
0
		/// <summary>
		/// Implements the operator ++.
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator ++(BigInteger bi1)
		{
			BigInteger result = new BigInteger(bi1);

			long val, carry = 1;
			int index = 0;

			while (carry != 0 && index < maxLength)
			{
				val = (long)(result.data[index]);
				val++;

				result.data[index] = (uint)(val & 0xFFFFFFFF);
				carry = val >> 32;

				index++;
			}

			if (index > result.dataLength)
				result.dataLength = index;
			else
			{
				while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
					result.dataLength--;
			}

			// overflow check
			int lastPos = maxLength - 1;

			// overflow if initial value was +ve but ++ caused a sign
			// change to negative.

			if ((bi1.data[lastPos] & 0x80000000) == 0 &&
			   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
			{
				throw (new ArithmeticException("Overflow in ++."));
			}
			return result;
		}
Пример #22
0
		public BigInteger Pow(BigInteger exp)
		{
			return power(this, exp);
		}
Пример #23
0
		/// <summary>
		/// Implements the operator --.
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator --(BigInteger bi1)
		{
			BigInteger result = new BigInteger(bi1);

			long val;
			bool carryIn = true;
			int index = 0;

			while (carryIn && index < maxLength)
			{
				val = (long)(result.data[index]);
				val--;

				result.data[index] = (uint)(val & 0xFFFFFFFF);

				if (val >= 0)
					carryIn = false;

				index++;
			}

			if (index > result.dataLength)
				result.dataLength = index;

			while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
				result.dataLength--;

			// overflow check
			int lastPos = maxLength - 1;

			// overflow if initial value was -ve but -- caused a sign
			// change to positive.

			if ((bi1.data[lastPos] & 0x80000000) != 0 &&
			   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
			{
				throw (new ArithmeticException("Underflow in --."));
			}

			return result;
		}
Пример #24
0
		private static BigInteger power(BigInteger number, BigInteger exponent)
		{
			if (exponent == 0)
				return 1;
			if (exponent == 1)
				return number;
			if (exponent % 2 == 0)
				return square(power(number, exponent / 2));
			else
				return number * square(power(number, (exponent - 1) / 2));
		}
Пример #25
0
		/// <summary>
		/// Overloading of unary << operators
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <param name="shiftVal">The shift val.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator <<(BigInteger bi1, int shiftVal)
		{
			BigInteger result = new BigInteger(bi1);
			result.dataLength = shiftLeft(result.data, shiftVal);

			return result;
		}
Пример #26
0
		private static BigInteger square(BigInteger num)
		{
			return num * num;
		}
Пример #27
0
		/// <summary>
		/// Overloading of the NOT operator (1's complement)
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator ~(BigInteger bi1)
		{
			BigInteger result = new BigInteger(bi1);

			for (int i = 0; i < maxLength; i++)
				result.data[i] = (uint)(~(bi1.data[i]));

			result.dataLength = maxLength;

			while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
				result.dataLength--;

			return result;
		}
Пример #28
0
		//root function
		public BigInteger root(int order)
		{

			uint numBits = (uint)this.bitCount();

			if ((numBits & 0x1) != 0) // odd number of bits
				numBits = (numBits >> 1) + 1;
			else
				numBits = (numBits >> 1);

			uint bytePos = numBits >> 5;
			byte bitPos = (byte)(numBits & 0x1F);

			uint mask;

			BigInteger result = new BigInteger();
			if (bitPos == 0)
				mask = 0x80000000;
			else
			{
				mask = (uint)1 << bitPos;
				bytePos++;
			}
			result.dataLength = (int)bytePos;

			for (int i = (int)bytePos - 1; i >= 0; i--)
			{
				while (mask != 0)
				{
					// guess
					result.data[i] ^= mask;

					// undo the guess if its square is larger than this
					if ((result.Pow(order)) > this)
						result.data[i] ^= mask;

					mask >>= 1;
				}
				mask = 0x80000000;
			}
			return result;
		}
Пример #29
0
		/// <summary>
		/// Private function that supports the division of two numbers with
		/// a divisor that has more than 1 digit.
		///
		/// Algorithm taken from [1]
		/// </summary>
		/// <param name="bi1">The bi1.</param>
		/// <param name="bi2">The bi2.</param>
		/// <param name="outQuotient">The out quotient.</param>
		/// <param name="outRemainder">The out remainder.</param>
		private static void multiByteDivide(BigInteger bi1, BigInteger bi2,
											BigInteger outQuotient, BigInteger outRemainder)
		{
			uint[] result = new uint[maxLength];

			int remainderLen = bi1.dataLength + 1;
			uint[] remainder = new uint[remainderLen];

			uint mask = 0x80000000;
			uint val = bi2.data[bi2.dataLength - 1];
			int shift = 0, resultPos = 0;

			while (mask != 0 && (val & mask) == 0)
			{
				shift++; mask >>= 1;
			}

			//Console.WriteLine("shift = {0}", shift);
			//Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);

			for (int i = 0; i < bi1.dataLength; i++)
				remainder[i] = bi1.data[i];
			shiftLeft(remainder, shift);
			bi2 = bi2 << shift;

			/*
			Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
			Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2);
			for(int q = remainderLen - 1; q >= 0; q--)
					Console.Write("{0:x2}", remainder[q]);
			Console.WriteLine();
			*/

			int j = remainderLen - bi2.dataLength;
			int pos = remainderLen - 1;

			ulong firstDivisorByte = bi2.data[bi2.dataLength - 1];
			ulong secondDivisorByte = bi2.data[bi2.dataLength - 2];

			int divisorLen = bi2.dataLength + 1;
			uint[] dividendPart = new uint[divisorLen];

			while (j > 0)
			{
				ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1];
				//Console.WriteLine("dividend = {0}", dividend);

				ulong q_hat = dividend / firstDivisorByte;
				ulong r_hat = dividend % firstDivisorByte;

				//Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat);

				bool done = false;
				while (!done)
				{
					done = true;

					if (q_hat == 0x100000000 ||
					   (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))
					{
						q_hat--;
						r_hat += firstDivisorByte;

						if (r_hat < 0x100000000)
							done = false;
					}
				}

				for (int h = 0; h < divisorLen; h++)
					dividendPart[h] = remainder[pos - h];

				BigInteger kk = new BigInteger(dividendPart);
				BigInteger ss = bi2 * (long)q_hat;

				//Console.WriteLine("ss before = " + ss);
				while (ss > kk)
				{
					q_hat--;
					ss -= bi2;
					//Console.WriteLine(ss);
				}
				BigInteger yy = kk - ss;

				//Console.WriteLine("ss = " + ss);
				//Console.WriteLine("kk = " + kk);
				//Console.WriteLine("yy = " + yy);

				for (int h = 0; h < divisorLen; h++)
					remainder[pos - h] = yy.data[bi2.dataLength - h];

				/*
				Console.WriteLine("dividend = ");
				for(int q = remainderLen - 1; q >= 0; q--)
						Console.Write("{0:x2}", remainder[q]);
				Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat);
				*/

				result[resultPos++] = (uint)q_hat;

				pos--;
				j--;
			}

			outQuotient.dataLength = resultPos;
			int y = 0;
			for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++)
				outQuotient.data[y] = result[x];
			for (; y < maxLength; y++)
				outQuotient.data[y] = 0;

			while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
				outQuotient.dataLength--;

			if (outQuotient.dataLength == 0)
				outQuotient.dataLength = 1;

			outRemainder.dataLength = shiftRight(remainder, shift);

			for (y = 0; y < outRemainder.dataLength; y++)
				outRemainder.data[y] = remainder[y];
			for (; y < maxLength; y++)
				outRemainder.data[y] = 0;
		}
Пример #30
0
		/// <summary>
		/// Returns the Greatest Common Divisor of this and bi.
		/// </summary>
		/// <param name="bi">The bi.</param>
		/// <returns>the GCD</returns>
		public BigInteger gcd(BigInteger bi)
		{
			BigInteger x;
			BigInteger y;

			if ((data[maxLength - 1] & 0x80000000) != 0)     // negative
				x = -this;
			else
				x = this;

			if ((bi.data[maxLength - 1] & 0x80000000) != 0)     // negative
				y = -bi;
			else
				y = bi;

			BigInteger g = y;

			while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0))
			{
				g = x;
				x = y % x;
				y = g;
			}

			return g;
		}