/// <summary> /// /// Assumes g of node was already calculated! /// </summary> /// <param name="s"></param> /// <returns></returns> public uint h(WorldState s) { int sicEstimate; if (Constants.costFunction == Constants.CostFunction.SUM_OF_COSTS) { sicEstimate = (int)SumIndividualCosts.h(s, this.instance); } else if (Constants.costFunction == Constants.CostFunction.MAKESPAN || Constants.costFunction == Constants.CostFunction.MAKESPAN_THEN_SUM_OF_COSTS) { sicEstimate = (int)MaxIndividualCosts.h(s, this.instance); } else { throw new Exception($"Unsupported cost function {Constants.costFunction}"); } if (sicEstimate == 0) // Only the goal has an estimate of zero { return(0); } int targetCost = s.g + sicEstimate + this.minAboveSic; // Ariel's idea - using SIC directly here to calc the target // CBS gets an explicitly partially solved state - the agents' g may be greater than zero. // So the cost CBS is going to calc is not of this node but of the initial problem instance, // this is accounted for later too. // (Notice node usually has a (possibly too low) h set already - inherited from the parent) return(this.h(s, targetCost, sicEstimate)); }
/// <summary> /// Computes a heuristic by running a bounded CBS search from the given node. /// Assumes g of node was already calculated and h isn't zero. /// </summary> /// <param name="s"></param> /// <param name="targetCost">Stop when the target cost is reached</param> /// <param name="sicEstimate">For a debug assertion.</param> /// <param name="lowLevelGeneratedCap">The number of low level nodes to generate</param> /// <param name="milliCap">The process total millisecond count to stop at</param> /// <param name="resume">Whether to resume the last search instead of solving the given node. Assumes the last search was from the same node as the given node.</param> /// <returns></returns> protected uint h(WorldState s, int targetCost, int sicEstimate = -1, int lowLevelGeneratedCap = -1, int milliCap = int.MaxValue, bool resume = false) { double start = this.runner.ElapsedMilliseconds(); ProblemInstance sAsProblemInstance; if (resume == false) { this.cbs.Clear(); sAsProblemInstance = s.ToProblemInstance(this.instance); this.cbs.Setup(sAsProblemInstance, Math.Max(s.makespan, // This forces must-constraints to be upheld when dealing with A*+OD nodes, // at the cost of forcing every agent to move when a goal could be found earlier with all must constraints upheld. s.minGoalTimeStep), // No point in finding shallower goal nodes this.runner, null, null, null); if (this.cbs.openList.Count > 0 && this.cbs.topMost) { if (sicEstimate == -1) { if (Constants.costFunction == Constants.CostFunction.SUM_OF_COSTS) { sicEstimate = (int)SumIndividualCosts.h(s, this.instance); } else if (Constants.costFunction == Constants.CostFunction.MAKESPAN || Constants.costFunction == Constants.CostFunction.MAKESPAN_THEN_SUM_OF_COSTS) { sicEstimate = (int)MaxIndividualCosts.h(s, this.instance); } else { throw new Exception($"Unsupported cost function {Constants.costFunction}"); } } Trace.Assert(((CbsNode)this.cbs.openList.Peek()).g - s.g == (int)sicEstimate, "Total cost of CBS root not same as SIC + g"); // Notice we're subtracting s.g, not sAsProblemInstance.g. // Must constraints we put may have forced some moves, // and we shouldn't count them as part of the estimate. } } else { sAsProblemInstance = this.cbs.GetProblemInstance(); } if (lowLevelGeneratedCap == -1) { // Rough estimate of the branching factor: lowLevelGeneratedCap = (int)Math.Pow(Constants.NUM_ALLOWED_DIRECTIONS, this.instance.agents.Length); } // Calc the h: this.cbs.targetF = targetCost; this.cbs.milliCap = milliCap; this.cbs.lowLevelGeneratedCap = lowLevelGeneratedCap; bool solved = this.cbs.Solve(); if (solved && this.reportSolution) { // We're always going to find a proper goal since we respected the node's minDepth s.SetSolution(this.cbs.GetSinglePlans()); s.SetGoalCost(this.cbs.solutionCost); // We have to do it explicitly. // We can't just change the node's g to g + cbs.g and its h to zero // because approaches like BPMX or maximazing PDBs might "fix" the h back. // So instead h is bumped to its maximum value when this method returns. s.SetSingleCosts(this.cbs.GetSingleCosts()); this.nodesSolved++; } double end = this.runner.ElapsedMilliseconds(); this.totalRuntime += end - start; this.nCalls++; this.cbs.AccumulateStatistics(); this.cbs.ClearStatistics(); if (this.cbs.solutionCost < 0) // A timeout is legitimately possible if very little time was left to begin with, // and a no solution failure may theoretically be possible too. { if (Constants.costFunction == Constants.CostFunction.SUM_OF_COSTS) { return(SumIndividualCosts.h(s, this.instance)); } else if (Constants.costFunction == Constants.CostFunction.MAKESPAN || Constants.costFunction == Constants.CostFunction.MAKESPAN_THEN_SUM_OF_COSTS) { return(MaxIndividualCosts.h(s, this.instance)); } else { throw new Exception($"Unsupported cost function {Constants.costFunction}"); } } Trace.Assert(this.cbs.solutionCost >= s.g, $"CBS total cost {this.cbs.solutionCost} is smaller than starting problem's initial cost {s.g}."); // = is allowed since even though this isn't a goal node (otherwise this function won't be called), // a non-goal node can have h==0 if a minimum depth is specified, and all agents have reached their // goal in this node, but the depth isn't large enough. uint cbsEstimate = (uint)(this.cbs.solutionCost - s.g); // Discounting the moves the agents did before we started solving // (This is easier than making a copy of each AgentState just to zero its lastMove.time) this.totalImprovement += (int)(cbsEstimate - s.h); // Not computing difference from SIC to not over-count, since a node can be improved twice. // Can be negative if the base heuristic was improved by: // - Partial expansion // - BPMX if (validate) { // Brute-force validation of admissibility of estimate: IHeuristicCalculator <WorldState> heuristic; if (Constants.costFunction == Constants.CostFunction.SUM_OF_COSTS) { heuristic = new SumIndividualCosts(); } else if (Constants.costFunction == Constants.CostFunction.MAKESPAN || Constants.costFunction == Constants.CostFunction.MAKESPAN_THEN_SUM_OF_COSTS) { heuristic = new MaxIndividualCosts(); } else { throw new Exception($"Unsupported cost function {Constants.costFunction}"); } heuristic.Init(this.instance, this.agentsToConsider); var epeastarsic = new EPEA_Star(heuristic); epeastarsic.Setup(sAsProblemInstance, s.makespan, runner); bool epeastarsicSolved = epeastarsic.Solve(); if (epeastarsicSolved) { Trace.Assert(epeastarsic.totalCost - s.g >= this.cbs.solutionCost - s.g, "Inadmissible!!"); } } return(cbsEstimate); }