Пример #1
0
            //-------------------------------------------------
            //  start - called by interface_pre_start so we
            //  can set ourselves up
            //-------------------------------------------------
            public void start(device_execute_interface execute, int linenum)
            {
                m_execute = execute;
                m_linenum = linenum;

                reset();

                device_t device = m_execute.device();

                device.save_item(m_stored_vector, "m_stored_vector", m_linenum);
                device.save_item(m_curvector, "m_curvector", m_linenum);
                device.save_item(m_curstate, "m_curstate", m_linenum);
            }
Пример #2
0
            //-------------------------------------------------
            //  set_state_synced - enqueue an event for later
            //  execution via timer
            //-------------------------------------------------
            public void set_state_synced(int state, UInt32 vector = USE_STORED_VECTOR)
            {
                LOG("set_state_synced('{0}',{1},{2},{3})\n", m_execute.device().tag(), m_linenum, state, vector);

                if (TEMPLOG)
                {
                    osd_printf_info("setline({0},{1},{2},{3})\n", m_execute.device().tag(), m_linenum, state, (vector == USE_STORED_VECTOR) ? 0 : vector);
                }

                assert(state == (int)line_state.ASSERT_LINE || state == (int)line_state.HOLD_LINE || state == (int)line_state.CLEAR_LINE);

                // if we're full of events, flush the queue and log a message
                int event_index = m_qindex++;

                if (event_index >= m_queue.Length)
                {
                    m_qindex--;
                    empty_event_queue();
                    event_index = m_qindex++;
                    m_execute.device().logerror("Exceeded pending input line event queue on device '{0}'!\n", m_execute.device().tag());
                }

                // enqueue the event
                if (event_index < m_queue.Length)
                {
                    if (vector == USE_STORED_VECTOR)
                    {
                        vector = (UInt32)m_stored_vector;
                    }
                    m_queue[event_index] = (int)(((UInt32)state & 0xff) | (vector << 8));

                    // if this is the first one, set the timer
                    if (event_index == 0)
                    {
                        m_execute.scheduler().synchronize(empty_event_queue, 0, this);
                    }
                }
            }
Пример #3
0
        // execution

        //-------------------------------------------------
        //  timeslice - execute all devices for a single
        //  timeslice
        //-------------------------------------------------
        public void timeslice()
        {
            bool call_debugger = (machine().debug_flags & DEBUG_FLAG_ENABLED) != 0;

            // build the execution list if we don't have one yet
            //if (UNEXPECTED(m_execute_list == null))
            if (m_execute_list == null)
            {
                rebuild_execute_list();
            }

            // if the current quantum has expired, find a new one
            while (m_basetime >= m_quantum_list.first().expire())
            {
                m_quantum_allocator.reclaim(m_quantum_list.detach_head());
            }

            // loop until we hit the next timer
            while (m_basetime < m_timer_list.expire())
            {
                // by default, assume our target is the end of the next quantum
                attotime target = m_basetime + new attotime(0, m_quantum_list.first().actual());

                // however, if the next timer is going to fire before then, override
                if (m_timer_list.expire() < target)
                {
                    target = m_timer_list.expire();
                }

                if (machine().video().frame_update_count() % 1000 == 0)
                {
                    //LOG(("------------------\n"));
                    LOG("device_scheduler.timeslice() - cpu_timeslice: target = {0}, m_timer_list.expire: {1}\n", target.as_string(), m_timer_list.expire().as_string());
                }

                // do we have pending suspension changes?
                if (m_suspend_changes_pending)
                {
                    apply_suspend_changes();
                }

                // loop over all CPUs
                for (device_execute_interface exec = m_execute_list; exec != null; exec = exec.m_nextexec)
                {
                    // only process if this CPU is executing or truly halted (not yielding)
                    // and if our target is later than the CPU's current time (coarse check)
                    if ((exec.m_suspend == 0 || exec.m_eatcycles > 0) && target.seconds() >= exec.m_localtime.seconds())  //if (EXPECTED((exec->m_suspend == 0 || exec->m_eatcycles) && target.seconds() >= exec->m_localtime.seconds()))
                    {
                        // compute how many attoseconds to execute this CPU
                        attoseconds_t delta = target.attoseconds() - exec.m_localtime.attoseconds();
                        if (delta < 0 && target.seconds() > exec.m_localtime.seconds())
                        {
                            delta += ATTOSECONDS_PER_SECOND;
                        }

                        assert(delta == (target - exec.m_localtime).as_attoseconds());

                        if (exec.m_attoseconds_per_cycle == 0)
                        {
                            exec.m_localtime = target;
                        }
                        // if we have enough for at least 1 cycle, do the math
                        else if (delta >= exec.m_attoseconds_per_cycle)
                        {
                            // compute how many cycles we want to execute
                            int ran = exec.m_cycles_running = (int)divu_64x32((u64)delta >> exec.m_divshift, (u32)exec.m_divisor);

                            if (machine().video().frame_update_count() % 1000 == 0)
                            {
                                LOG("device_scheduler.timeslice() - cpu '{0}': {1} ({2} cycles)\n", exec.device().tag(), delta, exec.m_cycles_running);
                            }

                            // if we're not suspended, actually execute
                            if (exec.m_suspend == 0)
                            {
                                g_profiler.start(exec.m_profiler);


                                // note that this global variable cycles_stolen can be modified
                                // via the call to cpu_execute
                                exec.m_cycles_stolen = 0;
                                m_executing_device   = exec;

                                exec.m_icountptr.i = exec.m_cycles_running;  // *exec->m_icountptr = exec->m_cycles_running;

                                if (!call_debugger)
                                {
                                    exec.run();
                                }
                                else
                                {
                                    exec.debugger_start_cpu_hook(target);
                                    exec.run();
                                    exec.debugger_stop_cpu_hook();
                                }

                                // adjust for any cycles we took back

                                //throw new emu_unimplemented();
#if false
                                assert(ran >= *exec->m_icountptr);
#endif

                                ran -= exec.m_icountptr.i;  //ran -= *exec->m_icountptr;

                                //throw new emu_unimplemented();
#if false
                                assert(ran >= exec->m_cycles_stolen);
#endif

                                ran -= exec.m_cycles_stolen;

                                g_profiler.stop();
                            }

                            // account for these cycles
                            exec.m_totalcycles += (u64)ran;

                            // update the local time for this CPU
                            attotime deltatime;
                            if (ran < exec.m_cycles_per_second)
                            {
                                deltatime = new attotime(0, exec.m_attoseconds_per_cycle * ran);
                            }
                            else
                            {
                                u32 remainder;
                                s32 secs = (s32)divu_64x32_rem((u64)ran, exec.m_cycles_per_second, out remainder);
                                deltatime = new attotime(secs, remainder * exec.m_attoseconds_per_cycle);
                            }

                            assert(deltatime >= attotime.zero);
                            exec.m_localtime += deltatime;

                            if (machine().video().frame_update_count() % 100 == 0)
                            {
                                LOG("device_scheduler.timeslice() - {0} ran, {1} total, time = {2}\n", ran, exec.m_totalcycles, exec.m_localtime.as_string());
                            }

                            // if the new local CPU time is less than our target, move the target up, but not before the base
                            if (exec.m_localtime < target)
                            {
                                target = std.max(exec.m_localtime, m_basetime);

                                if (machine().video().frame_update_count() % 1000 == 0)
                                {
                                    LOG("device_scheduler.timeslice() - (new target)\n");
                                }
                            }
                        }
                    }
                }

                m_executing_device = null;

                // update the base time
                m_basetime = target;
            }

            // execute timers
            execute_timers();
        }