Пример #1
0
        protected virtual void precompute_shells()
        {
            int nLayers = Slices.Count;

            LayerShells = new List <ShellsFillPolygon> [nLayers];
            gParallel.ForEach(Interval1i.Range(nLayers), (layeri) => {
                PlanarSlice slice   = Slices[layeri];
                LayerShells[layeri] = new List <ShellsFillPolygon>();

                List <GeneralPolygon2d> solids = slice.Solids;

                foreach (GeneralPolygon2d shape in solids)
                {
                    ShellsFillPolygon shells_gen  = new ShellsFillPolygon(shape);
                    shells_gen.PathSpacing        = Settings.SolidFillPathSpacingMM();
                    shells_gen.ToolWidth          = Settings.Machine.NozzleDiamMM;
                    shells_gen.Layers             = Settings.Shells;
                    shells_gen.InsetInnerPolygons = false;
                    shells_gen.Compute();
                    LayerShells[layeri].Add(shells_gen);

                    if (slice.Tags.Has(shape))
                    {
                        ShellTags.Add(shells_gen, slice.Tags.Get(shape));
                    }
                }
            });
        }
Пример #2
0
        /// <summary>
        /// Fill polygon with solid fill strategy.
        /// If bIsInfillAdjacent, then we optionally add one or more shells around the solid
        /// fill, to give the solid fill something to stick to (imagine dense linear fill adjacent
        /// to sparse infill area - when the extruder zigs, most of the time there is nothing
        /// for the filament to attach to, so it pulls back. ugly!)
        /// </summary>
        protected virtual void fill_solid_region(int layer_i, GeneralPolygon2d solid_poly,
                                                 IFillPathScheduler2d scheduler,
                                                 bool bIsInfillAdjacent = false)
        {
            List <GeneralPolygon2d> fillPolys = new List <GeneralPolygon2d>()
            {
                solid_poly
            };

            // if we are on an infill layer, and this shell has some infill region,
            // then we are going to draw contours around solid fill so it has
            // something to stick to
            // [TODO] should only be doing this if solid-fill is adjecent to infill region.
            //   But how to determine this? not easly because we don't know which polys
            //   came from where. Would need to do loop above per-polygon
            if (bIsInfillAdjacent && Settings.Part.InteriorSolidRegionShells > 0)
            {
                ShellsFillPolygon interior_shells = new ShellsFillPolygon(solid_poly, Settings.FillTypeFactory.Solid());
                interior_shells.PathSpacing            = Settings.SolidFillPathSpacingMM();
                interior_shells.ToolWidth              = Settings.Machine.NozzleDiamMM;
                interior_shells.Layers                 = Settings.Part.InteriorSolidRegionShells;
                interior_shells.PreserveOuterShells    = true;
                interior_shells.InsetFromInputPolygonX = 0;
                interior_shells.Compute();
                scheduler.AppendCurveSets(interior_shells.Shells);
                fillPolys = interior_shells.InnerPolygons;
            }

            // now actually fill solid regions
            foreach (GeneralPolygon2d fillPoly in fillPolys)
            {
                var solidFillSpacing        = Settings.SolidFillPathSpacingMM();
                TiledFillPolygon tiled_fill = new TiledFillPolygon(fillPoly)
                {
                    TileSize    = 13.1 * solidFillSpacing,
                    TileOverlap = 0.3 * solidFillSpacing
                };
                tiled_fill.TileFillGeneratorF = (tilePoly, index) =>
                {
                    int odd = ((index.x + index.y) % 2 == 0) ? 1 : 0;
                    RasterFillPolygon solid_gen = new RasterFillPolygon(tilePoly, Settings.FillTypeFactory.Solid())
                    {
                        InsetFromInputPolygon = false,
                        PathSpacing           = solidFillSpacing,
                        ToolWidth             = Settings.Machine.NozzleDiamMM,
                        AngleDeg = LayerFillAngleF(layer_i + odd)
                    };
                    return(solid_gen);
                };

                tiled_fill.Compute();
                scheduler.AppendCurveSets(tiled_fill.FillCurves);
            }
        }
Пример #3
0
        /// <summary>
        /// This is the main driver of the slicing process
        /// </summary>
        protected virtual void generate_result()
        {
            // should be parameterizable? this is 45 degrees...  (is it? 45 if nozzlediam == layerheight...)
            //double fOverhangAllowance = 0.5 * settings.NozzleDiamMM;
            OverhangAllowanceMM = Settings.LayerHeightMM / Math.Tan(45 * MathUtil.Deg2Rad);


            // initialize compiler and get start nozzle position
            Compiler.Begin();

            // We need N above/below shell paths to do roof/floors, and *all* shells to do support.
            // Also we can compute shells in parallel. So we just precompute them all here.
            precompute_shells();
            int nLayers = Slices.Count;

            // Now generate paths for each layer.
            // This could be parallelized to some extent, but we have to pass per-layer paths
            // to Scheduler in layer-order. Probably better to parallelize within-layer computes.
            for (int layer_i = 0; layer_i < nLayers; ++layer_i)
            {
                BeginLayerF(layer_i);

                // make path-accumulator for this layer
                ToolpathSetBuilder paths = new ToolpathSetBuilder();

                // TODO FIX
                //paths.Initialize(Compiler.NozzlePosition);
                paths.Initialize((double)(layer_i) * Settings.LayerHeightMM * Vector3d.AxisZ);

                // layer-up (ie z-change)
                paths.AppendZChange(Settings.LayerHeightMM, Settings.ZTravelSpeed);

                // rest of code does not directly access path builder, instead if
                // sends paths to scheduler.
                SequentialScheduler2d scheduler = new SequentialScheduler2d(paths, Settings);

                // a layer can contain multiple disjoint regions. Process each separately.
                List <ShellsFillPolygon> layer_shells = LayerShells[layer_i];
                for (int si = 0; si < layer_shells.Count; si++)
                {
                    // schedule shell paths that we pre-computed
                    ShellsFillPolygon shells_gen = layer_shells[si];
                    scheduler.AppendCurveSets(shells_gen.Shells);

                    // all client to do configuration (eg change settings for example)
                    BeginShellF(shells_gen, ShellTags.Get(shells_gen));

                    // solid fill areas are inner polygons of shell fills
                    List <GeneralPolygon2d> solid_fill_regions = shells_gen.InnerPolygons;

                    // fill solid regions
                    foreach (GeneralPolygon2d solid_poly in solid_fill_regions)
                    {
                        fill_solid_region(layer_i, solid_poly, scheduler, false);
                    }
                }

                // resulting paths for this layer (Currently we are just discarding this after compiling)
                ToolpathSet layerPaths = paths.Paths;

                // compile this layer
                Compiler.AppendPaths(layerPaths);
            }

            Compiler.End();
        }
Пример #4
0
        protected virtual void fill_bridge_region_decompose(GeneralPolygon2d poly, IFillPathScheduler2d scheduler, PrintLayerData layer_data)
        {
            poly.Simplify(0.1, 0.01, true);
            TriangulatedPolygonGenerator generator = new TriangulatedPolygonGenerator()
            {
                Polygon = poly, Subdivisions = 16
            };
            DMesh3 mesh = generator.Generate().MakeDMesh();
            //Util.WriteDebugMesh(mesh, "/Users/rms/scratch/bridgemesh.obj");


            //List<Polygon2d> polys = decompose_mesh_recursive(mesh);
            List <Polygon2d> polys = decompose_cluster_up(mesh);

            Util.WriteDebugMesh(mesh, "/Users/rms/scratch/bridgemesh_reduce.obj");

            double spacing = Settings.BridgeFillPathSpacingMM();

            foreach (Polygon2d polypart in polys)
            {
                Box2d    box   = polypart.MinimalBoundingBox(0.00001);
                Vector2d axis  = (box.Extent.x > box.Extent.y) ? box.AxisY : box.AxisX;
                double   angle = Math.Atan2(axis.y, axis.x) * MathUtil.Rad2Deg;

                GeneralPolygon2d gp = new GeneralPolygon2d(polypart);

                ShellsFillPolygon shells_fill = new ShellsFillPolygon(gp);
                shells_fill.PathSpacing            = Settings.SolidFillPathSpacingMM();
                shells_fill.ToolWidth              = Settings.Machine.NozzleDiamMM;
                shells_fill.Layers                 = 1;
                shells_fill.InsetFromInputPolygonX = 0.25;
                shells_fill.ShellType              = ShellsFillPolygon.ShellTypes.BridgeShell;
                shells_fill.FilterSelfOverlaps     = false;
                shells_fill.Compute();
                scheduler.AppendCurveSets(shells_fill.GetFillCurves());
                var fillPolys = shells_fill.InnerPolygons;

                double offset = Settings.Machine.NozzleDiamMM * Settings.SolidFillBorderOverlapX;
                fillPolys = ClipperUtil.MiterOffset(fillPolys, offset);

                foreach (var fp in fillPolys)
                {
                    BridgeLinesFillPolygon fill_gen = new BridgeLinesFillPolygon(fp)
                    {
                        InsetFromInputPolygon = false,
                        PathSpacing           = spacing,
                        ToolWidth             = Settings.Machine.NozzleDiamMM,
                        AngleDeg = angle,
                    };
                    fill_gen.Compute();
                    scheduler.AppendCurveSets(fill_gen.GetFillCurves());
                }
            }

            // fit bbox to try to find fill angle that has shortest spans
            //Box2d box = poly.Outer.MinimalBoundingBox(0.00001);
            //Vector2d axis = (box.Extent.x > box.Extent.y) ? box.AxisY : box.AxisX;
            //double angle = Math.Atan2(axis.y, axis.x) * MathUtil.Rad2Deg;

            // [RMS] should we do something like this?
            //if (Settings.SolidFillBorderOverlapX > 0) {
            //	double offset = Settings.Machine.NozzleDiamMM * Settings.SolidFillBorderOverlapX;
            //	fillPolys = ClipperUtil.MiterOffset(fillPolys, offset);
            //}
        }