public void Instantiate() { int[] actualLayersSizes = new int[LayersSizes.Length + 2]; actualLayersSizes[0] = 300; actualLayersSizes[actualLayersSizes.Length - 1] = 10; for (int i = 0; i < LayersSizes.Length; i++) actualLayersSizes[i + 1] = LayersSizes[i]; Instance = new Perceptron(actualLayersSizes); Instance.Initialize(); }
public void Instantiate() { int[] actualLayersSizes = new int[LayersSizes.Length + 2]; actualLayersSizes[0] = 300; actualLayersSizes[actualLayersSizes.Length - 1] = 10; for (int i = 0; i < LayersSizes.Length; i++) { actualLayersSizes[i + 1] = LayersSizes[i]; } Instance = new Perceptron(actualLayersSizes); Instance.Initialize(); }
static void Run(string[] args) { Engine.Output = new ConsoleStreamOutput(); if (args.Length == 0) { throw new Exception("error: invalid arguments\nUse /? or /help to see available commands"); } INeuralNetwork net; switch (args[0]) { case "/?": case "/help": Console.WriteLine("This is help."); break; case "/data": if (args.Length != 2) { InvalidArguments(); } Settings.Instance.DataDirectoryPath = args[1]; Settings.Save(); break; case "/tests": if (args.Length != 2) { InvalidArguments(); } Settings.Instance.TestsDirectoryPath = args[1]; Settings.Save(); break; case "/rate": if (args.Length != 2) { InvalidArguments(); } Settings.Instance.LearningRate = double.Parse(args[1]); Settings.Save(); break; case "/create": if (args.Length < 2) { InvalidArguments(); } int[] layersSizes = new int[args.Length - 1]; for (int i = 0; i < layersSizes.Length; i++) { layersSizes[i] = int.Parse(args[i + 1]); } Engine.Create(layersSizes); break; case "/learn": if (args.Length != 1) { InvalidArguments(); } Engine.Learn(); break; case "/classify": if (args.Length != 2) { InvalidArguments(); } Engine.Classify(args[1]); break; case "/optimize": Genetics genetics = new Genetics(); net = genetics.Optimize(); net.Save(Settings.Instance.NetworkFileName); Settings.Save(); break; case "/inspect": if (args.Length != 1) { InvalidArguments(); } net = new Perceptron(); net.Load(Settings.Instance.NetworkFileName); Console.WriteLine(net.Inspect()); break; default: InvalidArguments(); break; } }
static void Run(string[] args) { Engine.Output = new ConsoleStreamOutput(); if (args.Length == 0) throw new Exception("error: invalid arguments\nUse /? or /help to see available commands"); INeuralNetwork net; switch (args[0]) { case "/?": case "/help": Console.WriteLine("This is help."); break; case "/data": if (args.Length != 2) InvalidArguments(); Settings.Instance.DataDirectoryPath = args[1]; Settings.Save(); break; case "/tests": if (args.Length != 2) InvalidArguments(); Settings.Instance.TestsDirectoryPath = args[1]; Settings.Save(); break; case "/rate": if (args.Length != 2) InvalidArguments(); Settings.Instance.LearningRate = double.Parse(args[1]); Settings.Save(); break; case "/create": if (args.Length < 2) InvalidArguments(); int[] layersSizes = new int[args.Length - 1]; for (int i = 0; i < layersSizes.Length; i++) layersSizes[i] = int.Parse(args[i + 1]); Engine.Create(layersSizes); break; case "/learn": if (args.Length != 1) InvalidArguments(); Engine.Learn(); break; case "/classify": if (args.Length != 2) InvalidArguments(); Engine.Classify(args[1]); break; case "/optimize": Genetics genetics = new Genetics(); net = genetics.Optimize(); net.Save(Settings.Instance.NetworkFileName); Settings.Save(); break; case "/inspect": if (args.Length != 1) InvalidArguments(); net = new Perceptron(); net.Load(Settings.Instance.NetworkFileName); Console.WriteLine(net.Inspect()); break; default: InvalidArguments(); break; } }