public static void TestHaar1d() { int i = 0; double[] vec3 = { 4, 2, 5, 5 }; Haar.Haar1d(vec3, 4); Console.Write("The 1D Haar Transform: "); Console.Write("\n"); for (i = 0; i < 4; i++) { Console.Write(vec3[i]); Console.Write(" "); } Console.Write("\n"); }
public static Matrix GetWaveletTransformedMatrix(double[][] image, WaveletMethod waveletMethod) { int width = image[0].Length; int height = image.Length; Matrix dwtMatrix = null; Stopwatch stopWatch = Stopwatch.StartNew(); long startS = stopWatch.ElapsedTicks; switch (waveletMethod) { case WaveletMethod.Dwt: Wavelets.Dwt dwt = new Wavelets.Dwt(8); Matrix imageMatrix = new Matrix(image); dwtMatrix = dwt.Transform(imageMatrix); break; case WaveletMethod.Haar: Haar.Haar2d(image, height, width); dwtMatrix = new Matrix(image); break; case WaveletMethod.HaarTransformTensor: // This is using the tensor product layout dwtMatrix = HaarWaveletTransform(image); break; case WaveletMethod.HaarWaveletDecompositionTensor: // This is using the tensor product layout StandardHaarWaveletDecomposition haar = new StandardHaarWaveletDecomposition(); haar.DecomposeImageInPlace(image); dwtMatrix = new Matrix(image); break; case WaveletMethod.HaarWaveletDecomposition: StandardHaarWaveletDecomposition haarNew = new StandardHaarWaveletDecomposition(false); haarNew.DecomposeImageInPlace(image); dwtMatrix = new Matrix(image); break; case WaveletMethod.NonStandardHaarWaveletDecomposition: NonStandardHaarWaveletDecomposition haarNonStandard = new NonStandardHaarWaveletDecomposition(); haarNonStandard.DecomposeImageInPlace(image); dwtMatrix = new Matrix(image); break; case WaveletMethod.JWaveTensor: // This is using the tensor product layout WaveletInterface wavelet = null; wavelet = new Haar02(); //wavelet = new Daub02(); TransformInterface bWave = null; bWave = new FastWaveletTransform(wavelet); //bWave = new WaveletPacketTransform(wavelet); //bWave = new DiscreteWaveletTransform(wavelet); Transform t = new Transform(bWave); // perform all steps double[][] dwtArray = t.forward(image); dwtMatrix = new Matrix(dwtArray); break; case WaveletMethod.HaarWaveletCompress: int lastHeight = 0; int lastWidth = 0; Compress.WaveletCompress.HaarTransform2D(image, 10000, out lastHeight, out lastWidth); dwtMatrix = new Matrix(image); break; default: break; } long endS = stopWatch.ElapsedTicks; Console.WriteLine("WaveletMethod: {0} Time in ticks: {1}", Enum.GetName(typeof(WaveletMethod), waveletMethod), (endS - startS)); //dwtMatrix.WriteCSV("HaarImageNormalized.csv", ";"); // increase all values double[][] haarImageNormalized5k = dwtMatrix.MatrixData.Select(i => i.Select(j => j * 5000).ToArray()).ToArray(); //Matrix haarImageNormalized5kMatrix = new Matrix(haarImageNormalized5k); //haarImageNormalized5kMatrix.WriteCSV("HaarImageNormalized5k.csv", ";"); // convert to byte values (0 - 255) // duplicate the octave/ matlab method uint8 double[][] uint8 = new double[haarImageNormalized5k.Length][]; for (int i = 0; i < haarImageNormalized5k.Length; i++) { uint8[i] = new double[haarImageNormalized5k.Length]; for (int j = 0; j < haarImageNormalized5k[i].Length; j++) { double v = haarImageNormalized5k[i][j]; if (v > 255) { uint8[i][j] = 255; } else if (v < 0) { uint8[i][j] = 0; } else { uint8[i][j] = (byte)haarImageNormalized5k[i][j]; } } } Matrix uint8Matrix = new Matrix(uint8); //uint8Matrix.WriteCSV("Uint8HaarImageNormalized5k.csv", ";"); return(uint8Matrix); }