Пример #1
0
        public void InitVulkan()
        {
            VkResult err;

            err = CreateInstance(false);
            if (err != VkResult.Success)
            {
                throw new InvalidOperationException("Could not create Vulkan instance. Error: " + err);
            }

            if (Settings.Validation)
            {
            }

            // Physical Device
            uint gpuCount = 0;

            Util.CheckResult(vkEnumeratePhysicalDevices(Instance, &gpuCount, null));
            Debug.Assert(gpuCount > 0);
            // Enumerate devices
            IntPtr *physicalDevices = stackalloc IntPtr[(int)gpuCount];

            err = vkEnumeratePhysicalDevices(Instance, &gpuCount, (VkPhysicalDevice *)physicalDevices);
            if (err != VkResult.Success)
            {
                throw new InvalidOperationException("Could not enumerate physical devices.");
            }

            // GPU selection

            // Select physical Device to be used for the Vulkan example
            // Defaults to the first Device unless specified by command line

            uint selectedDevice = 0;

            // TODO: Implement arg parsing, etc.

            physicalDevice = ((VkPhysicalDevice *)physicalDevices)[selectedDevice];

            // Store properties (including limits) and features of the phyiscal Device
            // So examples can check against them and see if a feature is actually supported
            VkPhysicalDeviceProperties deviceProperties;

            vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
            DeviceProperties = deviceProperties;

            VkPhysicalDeviceFeatures deviceFeatures;

            vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures);
            DeviceFeatures = deviceFeatures;

            // Gather physical Device memory properties
            VkPhysicalDeviceMemoryProperties deviceMemoryProperties;

            vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
            DeviceMemoryProperties = deviceMemoryProperties;

            // Derived examples can override this to set actual features (based on above readings) to enable for logical device creation
            getEnabledFeatures();

            // Vulkan Device creation
            // This is handled by a separate class that gets a logical Device representation
            // and encapsulates functions related to a Device
            vulkanDevice = new vksVulkanDevice(physicalDevice);
            VkResult res = vulkanDevice.CreateLogicalDevice(enabledFeatures, EnabledExtensions);

            if (res != VkResult.Success)
            {
                throw new InvalidOperationException("Could not create Vulkan Device.");
            }
            device = vulkanDevice.LogicalDevice;

            // Get a graphics queue from the Device
            VkQueue queue;

            vkGetDeviceQueue(device, vulkanDevice.QFIndices.Graphics, 0, &queue);
            this.queue = queue;

            // Find a suitable depth format
            VkFormat depthFormat;
            uint     validDepthFormat = Tools.getSupportedDepthFormat(physicalDevice, &depthFormat);

            Debug.Assert(validDepthFormat == True);
            DepthFormat = depthFormat;

            Swapchain.Connect(Instance, physicalDevice, device);

            // Create synchronization objects
            VkSemaphoreCreateInfo semaphoreCreateInfo = Initializers.semaphoreCreateInfo();

            // Create a semaphore used to synchronize image presentation
            // Ensures that the image is displayed before we start submitting new commands to the queu
            Util.CheckResult(vkCreateSemaphore(device, &semaphoreCreateInfo, null, &GetSemaphoresPtr()->PresentComplete));
            // Create a semaphore used to synchronize command submission
            // Ensures that the image is not presented until all commands have been sumbitted and executed
            Util.CheckResult(vkCreateSemaphore(device, &semaphoreCreateInfo, null, &GetSemaphoresPtr()->RenderComplete));
            // Create a semaphore used to synchronize command submission
            // Ensures that the image is not presented until all commands for the text overlay have been sumbitted and executed
            // Will be inserted after the render complete semaphore if the text overlay is enabled
            Util.CheckResult(vkCreateSemaphore(device, &semaphoreCreateInfo, null, &GetSemaphoresPtr()->TextOverlayComplete));

            // Set up submit info structure
            // Semaphores will stay the same during application lifetime
            // Command buffer submission info is set by each example
            submitInfo = Initializers.SubmitInfo();
            submitInfo.pWaitDstStageMask    = (VkPipelineStageFlags *)submitPipelineStages.Data;
            submitInfo.waitSemaphoreCount   = 1;
            submitInfo.pWaitSemaphores      = &GetSemaphoresPtr()->PresentComplete;
            submitInfo.signalSemaphoreCount = 1;
            submitInfo.pSignalSemaphores    = &GetSemaphoresPtr()->RenderComplete;
        }
Пример #2
0
        /**
         * Loads a 3D model from a file into Vulkan buffers
         *
         * @param device Pointer to the Vulkan device used to generated the vertex and index buffers on
         * @param filename File to load (must be a model format supported by ASSIMP)
         * @param layout Vertex layout components (position, normals, tangents, etc.)
         * @param scale Load time scene scale
         * @param copyQueue Queue used for the memory staging copy commands (must support transfer)
         * @param (Optional) flags ASSIMP model loading flags
         */
        public bool loadFromFile(string filename, vksVertexLayout layout, float scale, vksVulkanDevice device, VkQueue copyQueue, PostProcessSteps flags = DefaultPostProcessSteps)
        {
            vksModelCreateInfo modelCreateInfo = new vksModelCreateInfo(scale, 1.0f, 0.0f);

            return(loadFromFile(filename, layout, &modelCreateInfo, device, copyQueue, flags));
        }
Пример #3
0
        /**
         * Load a 2D texture including all mip levels
         *
         * @param filename File to load (supports .ktx and .dds)
         * @param format Vulkan format of the image data stored in the file
         * @param device Vulkan device to create the texture on
         * @param copyQueue Queue used for the texture staging copy commands (must support transfer)
         * @param (Optional) imageUsageFlags Usage flags for the texture's image (defaults to VK_IMAGE_USAGE_SAMPLED_BIT)
         * @param (Optional) imageLayout Usage layout for the texture (defaults VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
         * @param (Optional) forceLinear Force linear tiling (not advised, defaults to false)
         *
         */
        public void loadFromFile(
            string filename,
            VkFormat format,
            vksVulkanDevice device,
            VkQueue copyQueue,
            VkImageUsageFlags imageUsageFlags = VkImageUsageFlags.Sampled,
            VkImageLayout imageLayout         = VkImageLayout.ShaderReadOnlyOptimal,
            bool forceLinear = false)
        {
            KtxFile tex2D;

            using (var fs = File.OpenRead(filename))
            {
                tex2D = KtxFile.Load(fs, false);
            }

            this.device = device;
            width       = tex2D.Header.PixelWidth;
            height      = tex2D.Header.PixelHeight;
            if (height == 0)
            {
                height = width;
            }
            mipLevels = tex2D.Header.NumberOfMipmapLevels;

            // Get device properites for the requested texture format
            VkFormatProperties formatProperties;

            vkGetPhysicalDeviceFormatProperties(device.PhysicalDevice, format, out formatProperties);

            // Only use linear tiling if requested (and supported by the device)
            // Support for linear tiling is mostly limited, so prefer to use
            // optimal tiling instead
            // On most implementations linear tiling will only support a very
            // limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
            bool useStaging = !forceLinear;

            VkMemoryAllocateInfo memAllocInfo = Initializers.memoryAllocateInfo();
            VkMemoryRequirements memReqs;

            // Use a separate command buffer for texture loading
            VkCommandBuffer copyCmd = device.createCommandBuffer(VkCommandBufferLevel.Primary, true);

            if (useStaging)
            {
                // Create a host-visible staging buffer that contains the raw image data
                VkBuffer       stagingBuffer;
                VkDeviceMemory stagingMemory;

                VkBufferCreateInfo bufferCreateInfo = Initializers.bufferCreateInfo();
                bufferCreateInfo.size = tex2D.GetTotalSize();
                // This buffer is used as a transfer source for the buffer copy
                bufferCreateInfo.usage       = VkBufferUsageFlags.TransferSrc;
                bufferCreateInfo.sharingMode = VkSharingMode.Exclusive;

                Util.CheckResult(vkCreateBuffer(device.LogicalDevice, &bufferCreateInfo, null, &stagingBuffer));

                // Get memory requirements for the staging buffer (alignment, memory type bits)
                vkGetBufferMemoryRequirements(device.LogicalDevice, stagingBuffer, &memReqs);

                memAllocInfo.allocationSize = memReqs.size;
                // Get memory type index for a host visible buffer
                memAllocInfo.memoryTypeIndex = device.getMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.HostVisible | VkMemoryPropertyFlags.HostCoherent);

                Util.CheckResult(vkAllocateMemory(device.LogicalDevice, &memAllocInfo, null, &stagingMemory));
                Util.CheckResult(vkBindBufferMemory(device.LogicalDevice, stagingBuffer, stagingMemory, 0));

                // Copy texture data into staging buffer
                byte *data;
                Util.CheckResult(vkMapMemory(device.LogicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
                byte[] pixelData = tex2D.GetAllTextureData();
                fixed(byte *pixelDataPtr = &pixelData[0])
                {
                    Unsafe.CopyBlock(data, pixelDataPtr, (uint)pixelData.Length);
                }

                vkUnmapMemory(device.LogicalDevice, stagingMemory);

                // Setup buffer copy regions for each mip level
                NativeList <VkBufferImageCopy> bufferCopyRegions = new NativeList <VkBufferImageCopy>();
                uint offset = 0;

                for (uint i = 0; i < mipLevels; i++)
                {
                    VkBufferImageCopy bufferCopyRegion = new VkBufferImageCopy();
                    bufferCopyRegion.imageSubresource.aspectMask     = VkImageAspectFlags.Color;
                    bufferCopyRegion.imageSubresource.mipLevel       = i;
                    bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
                    bufferCopyRegion.imageSubresource.layerCount     = 1;
                    bufferCopyRegion.imageExtent.width  = tex2D.Faces[0].Mipmaps[i].Width;
                    bufferCopyRegion.imageExtent.height = tex2D.Faces[0].Mipmaps[i].Height;
                    bufferCopyRegion.imageExtent.depth  = 1;
                    bufferCopyRegion.bufferOffset       = offset;

                    bufferCopyRegions.Add(bufferCopyRegion);

                    offset += tex2D.Faces[0].Mipmaps[i].SizeInBytes;
                }

                // Create optimal tiled target image
                VkImageCreateInfo imageCreateInfo = Initializers.imageCreateInfo();
                imageCreateInfo.imageType     = VkImageType._2d;
                imageCreateInfo.format        = format;
                imageCreateInfo.mipLevels     = mipLevels;
                imageCreateInfo.arrayLayers   = 1;
                imageCreateInfo.samples       = VkSampleCountFlags._1;
                imageCreateInfo.tiling        = VkImageTiling.Optimal;
                imageCreateInfo.sharingMode   = VkSharingMode.Exclusive;
                imageCreateInfo.initialLayout = VkImageLayout.Undefined;
                imageCreateInfo.extent        = new VkExtent3D {
                    width = width, height = height, depth = 1
                };
                imageCreateInfo.usage = imageUsageFlags;
                // Ensure that the TRANSFER_DST bit is set for staging
                if ((imageCreateInfo.usage & VkImageUsageFlags.TransferDst) == 0)
                {
                    imageCreateInfo.usage |= VkImageUsageFlags.TransferDst;
                }
                Util.CheckResult(vkCreateImage(device.LogicalDevice, &imageCreateInfo, null, out image));

                vkGetImageMemoryRequirements(device.LogicalDevice, image, &memReqs);

                memAllocInfo.allocationSize = memReqs.size;

                memAllocInfo.memoryTypeIndex = device.getMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.DeviceLocal);
                Util.CheckResult(vkAllocateMemory(device.LogicalDevice, &memAllocInfo, null, out deviceMemory));
                Util.CheckResult(vkBindImageMemory(device.LogicalDevice, image, deviceMemory, 0));

                VkImageSubresourceRange subresourceRange = new VkImageSubresourceRange();
                subresourceRange.aspectMask   = VkImageAspectFlags.Color;
                subresourceRange.baseMipLevel = 0;
                subresourceRange.levelCount   = mipLevels;
                subresourceRange.layerCount   = 1;

                // Image barrier for optimal image (target)
                // Optimal image will be used as destination for the copy
                Tools.setImageLayout(
                    copyCmd,
                    image,
                    VkImageAspectFlags.Color,
                    VkImageLayout.Undefined,
                    VkImageLayout.TransferDstOptimal,
                    subresourceRange);

                // Copy mip levels from staging buffer
                vkCmdCopyBufferToImage(
                    copyCmd,
                    stagingBuffer,
                    image,
                    VkImageLayout.TransferDstOptimal,
                    bufferCopyRegions.Count,
                    bufferCopyRegions.Data);

                // Change texture image layout to shader read after all mip levels have been copied
                this.imageLayout = imageLayout;
                Tools.setImageLayout(
                    copyCmd,
                    image,
                    VkImageAspectFlags.Color,
                    VkImageLayout.TransferDstOptimal,
                    imageLayout,
                    subresourceRange);

                device.flushCommandBuffer(copyCmd, copyQueue);

                // Clean up staging resources
                vkFreeMemory(device.LogicalDevice, stagingMemory, null);
                vkDestroyBuffer(device.LogicalDevice, stagingBuffer, null);
            }
            else
            {
                throw new NotImplementedException();

                /*
                 * // Prefer using optimal tiling, as linear tiling
                 * // may support only a small set of features
                 * // depending on implementation (e.g. no mip maps, only one layer, etc.)
                 *
                 * // Check if this support is supported for linear tiling
                 * Debug.Assert((formatProperties.linearTilingFeatures & VkFormatFeatureFlags.SampledImage) != 0);
                 *
                 * VkImage mappableImage;
                 * VkDeviceMemory mappableMemory;
                 *
                 * VkImageCreateInfo imageCreateInfo = Initializers.imageCreateInfo();
                 * imageCreateInfo.imageType = VkImageType._2d;
                 * imageCreateInfo.format = format;
                 * imageCreateInfo.extent = new VkExtent3D { width = width, height = height, depth = 1 };
                 * imageCreateInfo.mipLevels = 1;
                 * imageCreateInfo.arrayLayers = 1;
                 * imageCreateInfo.samples = VkSampleCountFlags._1;
                 * imageCreateInfo.tiling = VkImageTiling.Linear;
                 * imageCreateInfo.usage = imageUsageFlags;
                 * imageCreateInfo.sharingMode = VkSharingMode.Exclusive;
                 * imageCreateInfo.initialLayout = VkImageLayout.Undefined;
                 *
                 * // Load mip map level 0 to linear tiling image
                 * Util.CheckResult(vkCreateImage(device.LogicalDevice, &imageCreateInfo, null, &mappableImage));
                 *
                 * // Get memory requirements for this image
                 * // like size and alignment
                 * vkGetImageMemoryRequirements(device.LogicalDevice, mappableImage, &memReqs);
                 * // Set memory allocation size to required memory size
                 * memAllocInfo.allocationSize = memReqs.size;
                 *
                 * // Get memory type that can be mapped to host memory
                 * memAllocInfo.memoryTypeIndex = device.GetMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.HostVisible | VkMemoryPropertyFlags.HostCoherent);
                 *
                 * // Allocate host memory
                 * Util.CheckResult(vkAllocateMemory(device.LogicalDevice, &memAllocInfo, null, &mappableMemory));
                 *
                 * // Bind allocated image for use
                 * Util.CheckResult(vkBindImageMemory(device.LogicalDevice, mappableImage, mappableMemory, 0));
                 *
                 * // Get sub resource layout
                 * // Mip map count, array layer, etc.
                 * VkImageSubresource subRes = new VkImageSubresource();
                 * subRes.aspectMask = VkImageAspectFlags.Color;
                 * subRes.mipLevel = 0;
                 *
                 * VkSubresourceLayout subResLayout;
                 * void* data;
                 *
                 * // Get sub resources layout
                 * // Includes row pitch, size offsets, etc.
                 * vkGetImageSubresourceLayout(device.LogicalDevice, mappableImage, &subRes, &subResLayout);
                 *
                 * // Map image memory
                 * Util.CheckResult(vkMapMemory(device.LogicalDevice, mappableMemory, 0, memReqs.size, 0, &data));
                 *
                 * // Copy image data into memory
                 * memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
                 *
                 * vkUnmapMemory(device.LogicalDevice, mappableMemory);
                 *
                 * // Linear tiled images don't need to be staged
                 * // and can be directly used as textures
                 * image = mappableImage;
                 * deviceMemory = mappableMemory;
                 * imageLayout = imageLayout;
                 *
                 * // Setup image memory barrier
                 * vks::tools::setImageLayout(copyCmd, image, VkImageAspectFlags.Color, VkImageLayout.Undefined, imageLayout);
                 *
                 * device.flushCommandBuffer(copyCmd, copyQueue);
                 */
            }

            // Create a defaultsampler
            VkSamplerCreateInfo samplerCreateInfo = VkSamplerCreateInfo.New();

            samplerCreateInfo.magFilter    = VkFilter.Linear;
            samplerCreateInfo.minFilter    = VkFilter.Linear;
            samplerCreateInfo.mipmapMode   = VkSamplerMipmapMode.Linear;
            samplerCreateInfo.addressModeU = VkSamplerAddressMode.Repeat;
            samplerCreateInfo.addressModeV = VkSamplerAddressMode.Repeat;
            samplerCreateInfo.addressModeW = VkSamplerAddressMode.Repeat;
            samplerCreateInfo.mipLodBias   = 0.0f;
            samplerCreateInfo.compareOp    = VkCompareOp.Never;
            samplerCreateInfo.minLod       = 0.0f;
            // Max level-of-detail should match mip level count
            samplerCreateInfo.maxLod = (useStaging) ? (float)mipLevels : 0.0f;
            // Enable anisotropic filtering
            samplerCreateInfo.maxAnisotropy    = 8;
            samplerCreateInfo.anisotropyEnable = True;
            samplerCreateInfo.borderColor      = VkBorderColor.FloatOpaqueWhite;
            Util.CheckResult(vkCreateSampler(device.LogicalDevice, &samplerCreateInfo, null, out sampler));

            // Create image view
            // Textures are not directly accessed by the shaders and
            // are abstracted by image views containing additional
            // information and sub resource ranges
            VkImageViewCreateInfo viewCreateInfo = VkImageViewCreateInfo.New();

            viewCreateInfo.viewType   = VkImageViewType._2d;
            viewCreateInfo.format     = format;
            viewCreateInfo.components = new VkComponentMapping {
                r = VkComponentSwizzle.R, g = VkComponentSwizzle.G, b = VkComponentSwizzle.B, a = VkComponentSwizzle.A
            };
            viewCreateInfo.subresourceRange = new VkImageSubresourceRange {
                aspectMask = VkImageAspectFlags.Color, baseMipLevel = 0, levelCount = 1, baseArrayLayer = 0, layerCount = 1
            };
            // Linear tiling usually won't support mip maps
            // Only set mip map count if optimal tiling is used
            viewCreateInfo.subresourceRange.levelCount = (useStaging) ? mipLevels : 1;
            viewCreateInfo.image = image;
            Util.CheckResult(vkCreateImageView(device.LogicalDevice, &viewCreateInfo, null, out view));

            // Update descriptor image info member that can be used for setting up descriptor sets
            updateDescriptor();
        }
Пример #4
0
        /**
         * Loads a 3D model from a file into Vulkan buffers
         *
         * @param device Pointer to the Vulkan device used to generated the vertex and index buffers on
         * @param filename File to load (must be a model format supported by ASSIMP)
         * @param layout Vertex layout components (position, normals, tangents, etc.)
         * @param createInfo MeshCreateInfo structure for load time settings like scale, center, etc.
         * @param copyQueue Queue used for the memory staging copy commands (must support transfer)
         * @param (Optional) flags ASSIMP model loading flags
         */
        //public bool loadFromFile(string filename, vksVertexLayout layout, vksModelCreateInfo* createInfo, vksVulkanDevice device, VkQueue copyQueue, int flags)
        //{
        //    this.device = device.LogicalDevice;

        //    ObjFile objFile;
        //    using (var fs = File.OpenRead(filename))
        //    {
        //        objFile = new ObjParser().Parse(fs);
        //    }
        //    string mtlFilename = Path.ChangeExtension(filename, "mtl");
        //    MtlFile mtlFile;
        //    using (var fs = File.OpenRead(mtlFilename))
        //    {
        //        mtlFile = new MtlParser().Parse(fs);
        //    }

        //    if (objFile != null)
        //    {
        //        parts.Clear();
        //        parts.Resize((uint)objFile.MeshGroups.Length);

        //        Vector3 scale = new Vector3(1.0f);
        //        Vector2 uvscale = new Vector2(1.0f);
        //        Vector3 center = new Vector3(0.0f);
        //        if (createInfo != null)
        //        {
        //            scale = createInfo->Scale;
        //            uvscale = createInfo->UVScale;
        //            center = createInfo->Center;
        //        }

        //        NativeList<float> vertexBuffer = new NativeList<float>();
        //        NativeList<uint> indexBuffer = new NativeList<uint>();

        //        vertexCount = 0;
        //        indexCount = 0;

        //        // Load meshes
        //        parts.Count = (uint)objFile.MeshGroups.Length;
        //        for (uint i = 0; i < objFile.MeshGroups.Length; i++)
        //        {
        //            ConstructedMeshInfo mesh = objFile.GetMesh(objFile.MeshGroups[i]);

        //            parts[i] = new ModelPart();
        //            parts[i].vertexBase = vertexCount;
        //            parts[i].indexBase = indexCount;

        //            vertexCount += (uint)mesh.Vertices.Length;

        //            var material = mtlFile.Definitions[objFile.MeshGroups[i].Material];
        //            Vector3 pColor = material.DiffuseReflectivity;

        //            Vector3 Zero3D = Vector3.Zero;

        //            for (uint j = 0; j < mesh.Vertices.Length; j++)
        //            {
        //                VertexPositionNormalTexture vertex = mesh.Vertices[j];
        //                Vector3* pPos = &vertex.Position;
        //                Vector3* pNormal = &vertex.Normal;
        //                Vector2* pTexCoord = &vertex.TextureCoordinates;
        //                Vector3* pTangent = &Zero3D;
        //                Vector3* pBiTangent = &Zero3D;

        //                /*
        //                const aiVector3D* pPos = &(paiMesh->mVertices[j]);
        //                const aiVector3D* pNormal = &(paiMesh->mNormals[j]);
        //                const aiVector3D* pTexCoord = (paiMesh->HasTextureCoords(0)) ? &(paiMesh->mTextureCoords[0][j]) : &Zero3D;
        //                const aiVector3D* pTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mTangents[j]) : &Zero3D;
        //                const aiVector3D* pBiTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mBitangents[j]) : &Zero3D;
        //                */

        //                foreach (var component in layout.Components)
        //                {
        //                    switch (component)
        //                    {
        //                        case VertexComponent.VERTEX_COMPONENT_POSITION:
        //                            vertexBuffer.Add(pPos.X * scale.X + center.X);
        //                            vertexBuffer.Add(-pPos.Y * scale.Y + center.Y);
        //                            vertexBuffer.Add(pPos.Z * scale.Z + center.Z);
        //                            break;
        //                        case VertexComponent.VERTEX_COMPONENT_NORMAL:
        //                            vertexBuffer.Add(pNormal.X);
        //                            vertexBuffer.Add(-pNormal.Y);
        //                            vertexBuffer.Add(pNormal.Z);
        //                            break;
        //                        case VertexComponent.VERTEX_COMPONENT_UV:
        //                            vertexBuffer.Add(pTexCoord.X * uvscale.X);
        //                            vertexBuffer.Add(pTexCoord.Y * uvscale.Y);
        //                            break;
        //                        case VertexComponent.VERTEX_COMPONENT_COLOR:
        //                            vertexBuffer.Add(pColor.X);
        //                            vertexBuffer.Add(pColor.Y);
        //                            vertexBuffer.Add(pColor.Z);
        //                            break;
        //                        case VertexComponent.VERTEX_COMPONENT_TANGENT:
        //                            vertexBuffer.Add(pTangent.X);
        //                            vertexBuffer.Add(pTangent.Y);
        //                            vertexBuffer.Add(pTangent.Z);
        //                            break;
        //                        case VertexComponent.VERTEX_COMPONENT_BITANGENT:
        //                            vertexBuffer.Add(pBiTangent.X);
        //                            vertexBuffer.Add(pBiTangent.Y);
        //                            vertexBuffer.Add(pBiTangent.Z);
        //                            break;
        //                        // Dummy components for padding
        //                        case VertexComponent.VERTEX_COMPONENT_DUMMY_FLOAT:
        //                            vertexBuffer.Add(0.0f);
        //                            break;
        //                        case VertexComponent.VERTEX_COMPONENT_DUMMY_VEC4:
        //                            vertexBuffer.Add(0.0f);
        //                            vertexBuffer.Add(0.0f);
        //                            vertexBuffer.Add(0.0f);
        //                            vertexBuffer.Add(0.0f);
        //                            break;
        //                    };
        //                }

        //                dim.Max.X = Math.Max(pPos.X, dim.Max.X);
        //                dim.Max.Y = Math.Max(pPos.Y, dim.Max.Y);
        //                dim.Max.Z = Math.Max(pPos.Z, dim.Max.Z);

        //                dim.Min.X = Math.Min(pPos.X, dim.Min.X);
        //                dim.Min.Y = Math.Min(pPos.Y, dim.Min.Y);
        //                dim.Min.Z = Math.Min(pPos.Z, dim.Min.Z);
        //            }

        //            dim.Size = dim.Max - dim.Min;

        //            parts[i].vertexCount = (uint)mesh.Vertices.Length;

        //            uint indexBase = indexBuffer.Count;

        //            foreach (var index in mesh.Indices)
        //            {
        //                indexBuffer.Add(index);
        //            }
        //            indexCount += (uint)mesh.Indices.Length;
        //            parts[i].indexCount += (uint)mesh.Indices.Length;

        //            /*
        //            for (uint j = 0; j < paiMesh->mNumFaces; j++)
        //            {
        //                const aiFace&Face = paiMesh->mFaces[j];
        //                if (Face.mNumIndices != 3)
        //                    continue;
        //                indexBuffer.Add(indexBase + Face.mIndices[0]);
        //                indexBuffer.Add(indexBase + Face.mIndices[1]);
        //                indexBuffer.Add(indexBase + Face.mIndices[2]);
        //                parts[i].indexCount += 3;
        //                indexCount += 3;
        //            }
        //            */
        //        }


        //        uint vBufferSize = vertexBuffer.Count * sizeof(float);
        //        uint iBufferSize = indexBuffer.Count * sizeof(uint);

        //        // Use staging buffer to move vertex and index buffer to device local memory
        //        // Create staging buffers
        //        vksBuffer vertexStaging = new vksBuffer();
        //        vksBuffer indexStaging = new vksBuffer();

        //        // Vertex buffer
        //        Util.CheckResult(device.createBuffer(
        //            VkBufferUsageFlags.TransferSrc,
        //            VkMemoryPropertyFlags.HostVisible,
        //            vertexStaging,
        //            vBufferSize,
        //            vertexBuffer.Data.ToPointer()));

        //        // Index buffer
        //        Util.CheckResult(device.createBuffer(
        //            VkBufferUsageFlags.TransferSrc,
        //            VkMemoryPropertyFlags.HostVisible,
        //            indexStaging,
        //            iBufferSize,
        //            indexBuffer.Data.ToPointer()));

        //        // Create device local target buffers
        //        // Vertex buffer
        //        Util.CheckResult(device.createBuffer(
        //            VkBufferUsageFlags.VertexBuffer | VkBufferUsageFlags.TransferDst,
        //            VkMemoryPropertyFlags.DeviceLocal,
        //            vertices,
        //            vBufferSize));

        //        // Index buffer
        //        Util.CheckResult(device.createBuffer(
        //            VkBufferUsageFlags.IndexBuffer | VkBufferUsageFlags.TransferDst,
        //            VkMemoryPropertyFlags.DeviceLocal,
        //            indices,
        //            iBufferSize));

        //        // Copy from staging buffers
        //        VkCommandBuffer copyCmd = device.createCommandBuffer(VkCommandBufferLevel.Primary, true);

        //        VkBufferCopy copyRegion = new VkBufferCopy();

        //        copyRegion.size = vertices.size;

        //        vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, vertices.buffer, 1, &copyRegion);

        //        copyRegion.size = indices.size;

        //        vkCmdCopyBuffer(copyCmd, indexStaging.buffer, indices.buffer, 1, &copyRegion);

        //        device.flushCommandBuffer(copyCmd, copyQueue);

        //        // Destroy staging resources
        //        vkDestroyBuffer(device.LogicalDevice, vertexStaging.buffer, null);

        //        vkFreeMemory(device.LogicalDevice, vertexStaging.memory, null);

        //        vkDestroyBuffer(device.LogicalDevice, indexStaging.buffer, null);

        //        vkFreeMemory(device.LogicalDevice, indexStaging.memory, null);

        //        return true;
        //    }
        //    else
        //    {
        //        Console.WriteLine("Error loading file.");
        //        return false;
        //    }
        //}


        /**
         * Loads a 3D model from a file into Vulkan buffers
         *
         * @param device Pointer to the Vulkan device used to generated the vertex and index buffers on
         * @param filename File to load (must be a model format supported by ASSIMP)
         * @param layout Vertex layout components (position, normals, tangents, etc.)
         * @param createInfo MeshCreateInfo structure for load time settings like scale, center, etc.
         * @param copyQueue Queue used for the memory staging copy commands (must support transfer)
         * @param (Optional) flags ASSIMP model loading flags
         */
        bool loadFromFile(string filename, vksVertexLayout layout, vksModelCreateInfo *createInfo, vksVulkanDevice device, VkQueue copyQueue, PostProcessSteps flags = DefaultPostProcessSteps)
        {
            this.device = device.LogicalDevice;

            // Load file
            var assimpContext = new AssimpContext();
            var pScene        = assimpContext.ImportFile(filename, flags);

            parts.Clear();
            parts.Count = (uint)pScene.Meshes.Count;

            Vector3 scale   = new Vector3(1.0f);
            Vector2 uvscale = new Vector2(1.0f);
            Vector3 center  = new Vector3(0.0f);

            if (createInfo != null)
            {
                scale   = createInfo->Scale;
                uvscale = createInfo->UVScale;
                center  = createInfo->Center;
            }

            NativeList <float> vertexBuffer = new NativeList <float>();
            NativeList <uint>  indexBuffer  = new NativeList <uint>();

            vertexCount = 0;
            indexCount  = 0;

            // Load meshes
            for (int i = 0; i < pScene.Meshes.Count; i++)
            {
                var paiMesh = pScene.Meshes[i];

                parts[i]            = new ModelPart();
                parts[i].vertexBase = vertexCount;
                parts[i].indexBase  = indexCount;

                vertexCount += (uint)paiMesh.VertexCount;

                var pColor = pScene.Materials[paiMesh.MaterialIndex].ColorDiffuse;

                Vector3D Zero3D = new Vector3D(0.0f, 0.0f, 0.0f);

                for (int j = 0; j < paiMesh.VertexCount; j++)
                {
                    Vector3D pPos       = paiMesh.Vertices[j];
                    Vector3D pNormal    = paiMesh.Normals[j];
                    Vector3D pTexCoord  = paiMesh.HasTextureCoords(0) ? paiMesh.TextureCoordinateChannels[0][j] : Zero3D;
                    Vector3D pTangent   = paiMesh.HasTangentBasis ? paiMesh.Tangents[j] : Zero3D;
                    Vector3D pBiTangent = paiMesh.HasTangentBasis ? paiMesh.BiTangents[j] : Zero3D;

                    foreach (var component in layout.Components)
                    {
                        switch (component)
                        {
                        case VertexComponent.VERTEX_COMPONENT_POSITION:
                            vertexBuffer.Add(pPos.X * scale.X + center.X);
                            vertexBuffer.Add(-pPos.Y * scale.Y + center.Y);
                            vertexBuffer.Add(pPos.Z * scale.Z + center.Z);
                            break;

                        case VertexComponent.VERTEX_COMPONENT_NORMAL:
                            vertexBuffer.Add(pNormal.X);
                            vertexBuffer.Add(-pNormal.Y);
                            vertexBuffer.Add(pNormal.Z);
                            break;

                        case VertexComponent.VERTEX_COMPONENT_UV:
                            vertexBuffer.Add(pTexCoord.X * uvscale.X);
                            vertexBuffer.Add(pTexCoord.Y * uvscale.Y);
                            break;

                        case VertexComponent.VERTEX_COMPONENT_COLOR:
                            vertexBuffer.Add(pColor.R);
                            vertexBuffer.Add(pColor.G);
                            vertexBuffer.Add(pColor.B);
                            break;

                        case VertexComponent.VERTEX_COMPONENT_TANGENT:
                            vertexBuffer.Add(pTangent.X);
                            vertexBuffer.Add(pTangent.Y);
                            vertexBuffer.Add(pTangent.Z);
                            break;

                        case VertexComponent.VERTEX_COMPONENT_BITANGENT:
                            vertexBuffer.Add(pBiTangent.X);
                            vertexBuffer.Add(pBiTangent.Y);
                            vertexBuffer.Add(pBiTangent.Z);
                            break;

                        // Dummy components for padding
                        case VertexComponent.VERTEX_COMPONENT_DUMMY_FLOAT:
                            vertexBuffer.Add(0.0f);
                            break;

                        case VertexComponent.VERTEX_COMPONENT_DUMMY_VEC4:
                            vertexBuffer.Add(0.0f);
                            vertexBuffer.Add(0.0f);
                            vertexBuffer.Add(0.0f);
                            vertexBuffer.Add(0.0f);
                            break;
                        }
                        ;
                    }

                    dim.Max.X = (float)Math.Max(pPos.X, dim.Max.X);
                    dim.Max.Y = (float)Math.Max(pPos.Y, dim.Max.Y);
                    dim.Max.Z = (float)Math.Max(pPos.Z, dim.Max.Z);

                    dim.Min.X = (float)Math.Min(pPos.X, dim.Min.X);
                    dim.Min.Y = (float)Math.Min(pPos.Y, dim.Min.Y);
                    dim.Min.Z = (float)Math.Min(pPos.Z, dim.Min.Z);
                }

                dim.Size = dim.Max - dim.Min;

                parts[i].vertexCount = (uint)paiMesh.VertexCount;

                uint indexBase = indexBuffer.Count;
                for (uint j = 0; j < paiMesh.FaceCount; j++)
                {
                    var Face = paiMesh.Faces[(int)j];
                    if (Face.IndexCount != 3)
                    {
                        continue;
                    }
                    indexBuffer.Add(indexBase + (uint)Face.Indices[0]);
                    indexBuffer.Add(indexBase + (uint)Face.Indices[1]);
                    indexBuffer.Add(indexBase + (uint)Face.Indices[2]);
                    parts[i].indexCount += 3;
                    indexCount          += 3;
                }
            }


            uint vBufferSize = (vertexBuffer.Count) * sizeof(float);
            uint iBufferSize = (indexBuffer.Count) * sizeof(uint);

            // Use staging buffer to move vertex and index buffer to device local memory
            // Create staging buffers
            vksBuffer vertexStaging = new vksBuffer();
            vksBuffer indexStaging  = new vksBuffer();

            // Vertex buffer
            Util.CheckResult(device.createBuffer(
                                 VkBufferUsageFlags.TransferSrc,
                                 VkMemoryPropertyFlags.HostVisible,
                                 vertexStaging,
                                 vBufferSize,
                                 vertexBuffer.Data.ToPointer()));

            // Index buffer
            Util.CheckResult(device.createBuffer(
                                 VkBufferUsageFlags.TransferSrc,
                                 VkMemoryPropertyFlags.HostVisible,
                                 indexStaging,
                                 iBufferSize,
                                 indexBuffer.Data.ToPointer()));

            // Create device local target buffers
            // Vertex buffer
            Util.CheckResult(device.createBuffer(
                                 VkBufferUsageFlags.VertexBuffer | VkBufferUsageFlags.TransferDst,
                                 VkMemoryPropertyFlags.DeviceLocal,
                                 vertices,
                                 vBufferSize));

            // Index buffer
            Util.CheckResult(device.createBuffer(
                                 VkBufferUsageFlags.IndexBuffer | VkBufferUsageFlags.TransferDst,
                                 VkMemoryPropertyFlags.DeviceLocal,
                                 indices,
                                 iBufferSize));

            // Copy from staging buffers
            VkCommandBuffer copyCmd = device.createCommandBuffer(VkCommandBufferLevel.Primary, true);

            VkBufferCopy copyRegion = new VkBufferCopy();

            copyRegion.size = vertices.size;
            vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, vertices.buffer, 1, &copyRegion);

            copyRegion.size = indices.size;
            vkCmdCopyBuffer(copyCmd, indexStaging.buffer, indices.buffer, 1, &copyRegion);

            device.flushCommandBuffer(copyCmd, copyQueue);

            // Destroy staging resources
            vkDestroyBuffer(device.LogicalDevice, vertexStaging.buffer, null);
            vkFreeMemory(device.LogicalDevice, vertexStaging.memory, null);
            vkDestroyBuffer(device.LogicalDevice, indexStaging.buffer, null);
            vkFreeMemory(device.LogicalDevice, indexStaging.memory, null);

            return(true);
        }