Пример #1
0
        /// <summary>
        /// Long short-term memory cell (LSTM).
        /// </summary>
        /// <param name="inputs"></param>
        /// <param name="training"></param>
        /// <param name="state"></param>
        /// <returns></returns>
        protected Tensors Call(Tensors inputs, Tensor state = null, bool is_training = false)
        {
            var one = constant_op.constant(1, dtype: dtypes.int32);
            // Parameters of gates are concatenated into one multiply for efficiency.
            Tensor c = null;
            Tensor h = null;

            if (_state_is_tuple)
            {
                (c, h) = ((Tensor)_state.c, (Tensor)_state.h);
            }
            else
            {
                // array_ops.split(value: state, num_or_size_splits: 2, axis: one);
                throw new NotImplementedException("BasicLstmCell call");
            }
            var gate_inputs = math_ops.matmul(array_ops.concat(new[] { (Tensor)inputs, h }, 1), _kernel.AsTensor());

            gate_inputs = nn_ops.bias_add(gate_inputs, _bias);

            // i = input_gate, j = new_input, f = forget_gate, o = output_gate
            var tensors = array_ops.split(value: gate_inputs, num_split: 4, axis: one);

            var(i, j, f, o) = (tensors[0], tensors[1], tensors[2], tensors[3]);

            var forget_bias_tensor = constant_op.constant(_forget_bias, dtype: f.dtype);
            // Note that using `add` and `multiply` instead of `+` and `*` gives a
            // performance improvement. So using those at the cost of readability.
            var new_c = gen_math_ops.add(
                math_ops.multiply(c, math_ops.sigmoid(gen_math_ops.add(f, forget_bias_tensor))),
                math_ops.multiply(math_ops.sigmoid(i), _activation.Activate(j)));

            var new_h = math_ops.multiply(_activation.Activate(new_c), math_ops.sigmoid(o));


            if (_state_is_tuple)
            {
                return(new_c);
            }
            else
            {
                return(array_ops.concat(new[] { new_c, new_h }, 1));
            }
        }
Пример #2
0
 public static Tensor einsum(string equation, Tensors inputs, string name = null)
 {
     return(tf_with(ops.name_scope(name, "einsum", inputs), scope =>
     {
         name = scope;
         return tf.Context.ExecuteOp("Einsum", name, new ExecuteOpArgs
         {
             OpInputArgs = new object[] { inputs.ToArray() },
             GetGradientAttrs = (op) => new
             {
                 equation = op.get_attr <string>("equation"),
                 N = op.get_attr <int>("N"),
                 T = op.get_attr <TF_DataType>("T")
             }
         }.SetAttributes(new
         {
             equation = equation
         }));
     }));
 }
Пример #3
0
        public static (Tensors, Tensor) clip_by_global_norm(Tensor[] t_list, float clip_norm, Tensor use_norm = null, string name = null)
        {
            use_norm = global_norm(t_list, name);
            return(tf_with(ops.name_scope(name, "clip_by_global_norm", t_list), delegate
            {
                // Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
                var scale_for_finite = clip_norm * math_ops.minimum(
                    1.0f / use_norm,
                    constant_op.constant(1.0, dtype: use_norm.dtype) / clip_norm);

                // If use_norm is any finite number, this is a no-op. For inf/-inf/NaN,
                // this will make scale NaN.
                var scale = scale_for_finite + (use_norm - use_norm);

                Tensors values_clipped = new Tensors();
                foreach (var(i, v) in enumerate(t_list))
                {
                    values_clipped.Add(array_ops.identity(v * scale, name: $"{name}_{i}"));
                }
                return (values_clipped, use_norm);
            }));
Пример #4
0
        public static Tensors[] _reconstruct_sequence_inputs(OpDef op_def, Tensor[] inputs, MapField <string, AttrValue> attrs)
        {
            var grouped_inputs = new List <Tensors>();
            int i = 0;

            foreach (var input_arg in op_def.InputArg)
            {
                int  input_len   = 1;
                bool is_sequence = false;

                if (!string.IsNullOrEmpty(input_arg.NumberAttr))
                {
                    input_len   = (int)attrs[input_arg.NumberAttr].I;
                    is_sequence = true;
                }
                else if (!string.IsNullOrEmpty(input_arg.TypeListAttr))
                {
                    input_len   = attrs[input_arg.TypeListAttr].List.Type.Count;
                    is_sequence = true;
                }

                if (is_sequence)
                {
                    var input_tensors = new Tensors(inputs.Skip(i).Take(input_len).ToArray());
                    input_tensors.IsList = true;
                    grouped_inputs.Add(input_tensors);
                }
                else
                {
                    grouped_inputs.Add(inputs[i]);
                }

                i += input_len;
            }

            return(grouped_inputs.ToArray());
        }
Пример #5
0
        public Tensors __call__(Tensors inputs,
                                Tensor state        = null,
                                Tensor training     = null,
                                VariableScope scope = null)
        {
            _set_scope(scope);
            _graph = ops._get_graph_from_inputs(inputs, graph: _graph);

            variable_scope scope_context_manager = null;

            if (built)
            {
                scope_context_manager = tf.variable_scope(_scope,
                                                          reuse: true,
                                                          auxiliary_name_scope: false);
            }
            else
            {
                scope_context_manager = tf.variable_scope(_scope,
                                                          reuse: _reuse,
                                                          auxiliary_name_scope: false);
            }

            Tensors outputs = null;

            tf_with(scope_context_manager, scope2 =>
            {
                _current_scope = scope2;
                // Actually call layer
            });


            // Update global default collections.

            return(outputs);
        }
        public FilterDataset(IDatasetV2 input_dataset,
                             Func <Tensors, Tensors> predicate_func) : base(input_dataset)
        {
            var func = new ConcreteFunction($"{predicate_func.Method.Name}_{Tensorflow.ops.uid_function()}");

            func.Enter();
            var inputs = new Tensors();

            foreach (var input in input_dataset.element_spec)
            {
                inputs.Add(tf.placeholder(input.dtype, shape: input.shape, name: "arg"));
            }
            var outputs = predicate_func(inputs);

            func.ToGraph(inputs, outputs);
            func.Exit();

            structure = func.OutputStructure;

            variant_tensor = ops.filter_dataset(input_dataset.variant_tensor,
                                                func,
                                                output_types,
                                                output_shapes);
        }
Пример #7
0
 /// <summary>
 /// `Model` groups layers into an object with training and inference features.
 /// </summary>
 /// <param name="input"></param>
 /// <param name="output"></param>
 /// <returns></returns>
 public Functional Model(Tensors inputs, Tensors outputs, string name = null)
 => new Functional(inputs, outputs, name: name);
Пример #8
0
 public static Graph _get_graph_from_inputs(Tensors op_input_list)
 => _get_graph_from_inputs(op_input_list: op_input_list, graph: null);
 public IDatasetV2 from_tensors(Tensors tensors)
 => new TensorDataset(tensors);
Пример #10
0
 public Tensor einsum(string equation, Tensors inputs, string name = null)
 => math_ops.einsum(equation, inputs, name: name);
Пример #11
0
 /// <summary>
 /// `Model` groups layers into an object with training and inference features.
 /// </summary>
 /// <param name="input"></param>
 /// <param name="output"></param>
 /// <returns></returns>
 public Functional Model(Tensors inputs, Tensors outputs)
 => new Functional(inputs, outputs);