/// <summary>
        /// adds a ptdur to the sieve
        /// </summary>
        /// <param name="ptdur">the ptdur to add</param>
        /// <returns>the leaf that the ptdur is stored in</returns>
        private Leaf Add(PTD ptdur)
        {
            int margin     = k + 1 - (int)ptdur.Bag.Count();
            int sieveIndex = margin == 0 ? 0 : ((int)Math.Ceiling(Math.Log(margin, 2)) + 1);

            return(blockSieves[sieveIndex].Add(ptdur));
        }
Пример #2
0
        public static bool IsPossiblyUsable(List <PTD> children, ImmutableGraph graph)
        {
            for (int i = 0; i < children.Count; i++)
            {
                PTD child1 = children[i];
                for (int j = i + 1; j < children.Count; j++)
                {
                    PTD child2 = children[j];

                    BitSet childrenInletsIntersection = new BitSet(child1.inlet);
                    childrenInletsIntersection.IntersectWith(child2.inlet);

                    if (!childrenInletsIntersection.IsEmpty())
                    {
                        return(false);
                    }

                    BitSet verticesIntersection = new BitSet(child1.vertices);
                    verticesIntersection.IntersectWith(child2.vertices);

                    if (!child1.outlet.IsSupersetOf(verticesIntersection) || !child2.outlet.IsSupersetOf(verticesIntersection))
                    {
                        return(false);
                    }
                }
            }

            return(true);
        }
        /// <summary>
        /// Replaces a ptdur with another equivalent one which has a smaller root bag. The replacement is not done immediately,
        /// but needs to be initiated by the FlushAdd method.
        /// </summary>
        /// <param name="oldPtdur">the ptdur to replace</param>
        /// <param name="newPtdur">the new ptdur</param>
        public void Replace(PTD oldPtdur, PTD newPtdur)
        {
            if (ptdurToLeafMapping.TryGetValue(oldPtdur, out Leaf leaf))
            {
                int oldMargin = k + 1 - (int)oldPtdur.Bag.Count();
                int newMargin = k + 1 - (int)newPtdur.Bag.Count();

                int oldSieveIndex = oldMargin == 0 ? 0 : ((int)Math.Ceiling(Math.Log(oldMargin, 2)) + 1);
                int newSieveIndex = newMargin == 0 ? 0 : ((int)Math.Ceiling(Math.Log(newMargin, 2)) + 1);

                if (oldSieveIndex == newSieveIndex)
                {
                    leaf.ptdur = newPtdur;
                    ptdurToLeafMapping.Remove(oldPtdur);
                    ptdurToLeafMapping.Add(newPtdur, leaf);
                }
                else
                {
                    leaf.Remove();
                    ptdurToLeafMapping.Remove(oldPtdur);
                    leaf = Add(newPtdur);
                    ptdurToLeafMapping.Add(newPtdur, leaf);
                }
            }
            else
            {
                int index = ptdurToDeferredAdditionIndexMapping[oldPtdur];
                ptdurToDeferredAdditionIndexMapping.Add(newPtdur, index);
                toAdd[index] = newPtdur;
            }
        }
Пример #4
0
        //TODO: perhaps maintain the sets of components associated with the outlet

        #region constructors

        /// <summary>
        /// copy constructor
        /// </summary>
        /// <param name="ptd">the ptd to copy</param>
        public PTD(PTD ptd)
        {
            Bag      = new BitSet(ptd.Bag);
            vertices = new BitSet(ptd.vertices);
            inlet    = new BitSet(ptd.inlet);
            outlet   = new BitSet(ptd.outlet);
            children = new List <PTD>(ptd.children);
        }
Пример #5
0
        /// <summary>
        /// makes a deep copy of a given ptd
        /// </summary>
        /// <param name="original">the ptd to copy</param>
        /// <returns>a deep copy of that ptd</returns>
        private static PTD DeepCopy(PTD original)
        {
            PTD result = new PTD(original.Bag);

            for (int i = 0; i < original.children.Count; i++)
            {
                result.children.Add(DeepCopy(original.children[i]));
            }
            return(result);
        }
Пример #6
0
        internal void AssertConsistency(int vertexCount)
        {
            // create a list of all bags
            List <BitSet> bagsList      = new List <BitSet>();
            List <int>    parentBags    = new List <int>();
            Stack <PTD>   childrenStack = new Stack <PTD>();
            Stack <int>   parentStack   = new Stack <int>();

            childrenStack.Push(this);
            parentStack.Push(-1);
            while (childrenStack.Count > 0)
            {
                PTD current = childrenStack.Pop();
                int parent  = parentStack.Pop();

                bagsList.Add(current.Bag);
                parentBags.Add(parent);
                foreach (PTD child in current.children)
                {
                    childrenStack.Push(child);
                    parentStack.Push(bagsList.Count - 1);
                }
            }

            // check consistency
            for (int i = 0; i < vertexCount; i++)
            {
                /*
                 *  key insight: all bags containing i form a subtree.
                 *  Therefore, in order for the tree decomposition to be consistent, there must be only one root for all subtrees containing i
                 */
                HashSet <int> ancestors = new HashSet <int>();
                for (int j = 0; j < bagsList.Count; j++)
                {
                    if (bagsList[j][i] == true)
                    {
                        int currentAncestor = j;
                        int parentBag       = parentBags[j];
                        while (parentBag != -1 && bagsList[parentBag][i])
                        {
                            currentAncestor = parentBag;
                            parentBag       = parentBags[currentAncestor];
                            ;
                        }
                        ancestors.Add(currentAncestor);
                        if (ancestors.Count == 2)
                        {
                            Print();
                            Trace.Fail(String.Format("The printed ptd is not consistent. There are at least two subtrees containing vertex {0}.", i.ToString()));
                        }
                    }
                }
            }
        }
        /// <summary>
        /// queries this sieve to find all candidate ptdurs that a ptd might be able to be attached to
        /// </summary>
        /// <param name="ptd">the ptd to find candidate parents for</param>
        /// <returns>an enumerable of candidate ptdurs that the ptd might be able to be attached to</returns>
        public IEnumerable <PTD> EligiblePTDURs(PTD ptd, PTD ptdurVersionOfPTD)
        {
            yield return(ptdurVersionOfPTD);

            for (int i = 0; i < blockSieves.Length; i++)
            {
                foreach (PTD ptdur in blockSieves[i].GetCandidatePTDURs(ptd))
                {
                    yield return(ptdur);
                }
            }
        }
Пример #8
0
        public static PTD CreatePTDURFromPTD(PTD Tau)
        {
            BitSet bag      = new BitSet(Tau.outlet);
            BitSet outlet   = new BitSet(Tau.outlet);
            BitSet inlet    = new BitSet(Tau.inlet);
            BitSet vertices = new BitSet(Tau.vertices);

            List <PTD> children = new List <PTD>();

            children.Add(Tau);
            return(new PTD(bag, vertices, outlet, inlet, children));
        }
Пример #9
0
        public static void Reroot(ref PTD ptd, BitSet rootSet)
        {
            if (ptd.Bag.IsSupersetOf(rootSet))
            {
                return;
            }

            Dictionary <PTD, PTD> parents = new Dictionary <PTD, PTD>();

            parents[ptd] = null;

            // find root node (its bag is a superset of the root set)
            PTD         rootNode  = null;
            Stack <PTD> nodeStack = new Stack <PTD>();

            nodeStack.Push(ptd);
            PTD currentNode;

            while (nodeStack.Count > 0)
            {
                currentNode = nodeStack.Pop();

                for (int i = 0; i < currentNode.children.Count; i++)
                {
                    PTD child = currentNode.children[i];

                    parents[child] = currentNode;

                    if (child.Bag.IsSupersetOf(rootSet))
                    {
                        rootNode = child;
                        break;
                    }

                    nodeStack.Push(child);
                }
            }

            Debug.Assert(rootNode != null);

            // reroot (swap parent-child relationship between all nodes that lie between the former root and the future root)
            currentNode = rootNode;
            PTD formerParentNode;

            while ((formerParentNode = parents[currentNode]) != null)
            {
                currentNode.children.Add(formerParentNode);
                formerParentNode.children.Remove(currentNode);
                currentNode = formerParentNode;
            }

            ptd = rootNode;
        }
Пример #10
0
        /// <summary>
        /// adds a ptdur to this sieve
        /// </summary>
        /// <param name="ptdur">the ptdur to add</param>
        /// <param name="forceAddition">forces the addition of the ptdur without testing if a ptdur already exists that is 'better' in terms of optional components</param>
        /// <returns>the leaf that this ptdur is stored in</returns>
        public Leaf Add(PTD ptdur, bool forceAddition = false)
        {
            SieveNode currentNode = startNode;

            // traverse the tree
            do
            {
                InnerNode currentInnerNode = currentNode as InnerNode;

                // if it exists, then find the child with the matching interval BitSet and mark it as the current node
                bool currentNodeHasMatchingChild = false;
                for (int i = 0; i < currentInnerNode.children.Count; i++)
                {
                    (BitSet childSet, SieveNode sieveNode) = currentInnerNode.children[i];
                    if (ptdur.vertices.EqualsOnInterval(childSet, currentInnerNode.intervalFrom, currentInnerNode.intervalTo))
                    {
                        currentNode = sieveNode;
                        currentNodeHasMatchingChild = true;
                        break;
                    }
                }
                // if such a child does not exist, make one
                if (!currentNodeHasMatchingChild)
                {
                    // add new inner node that covers the rest of the interval if the current node doesn't cover it fully
                    if (currentInnerNode.intervalTo < vertexCount)
                    {
                        InnerNode newNode        = new InnerNode(currentInnerNode.intervalTo, vertexCount, currentInnerNode);
                        BitSet    intervalBitSet = ptdur.vertices;
                        currentInnerNode.AddChild(intervalBitSet, newNode);
                        currentInnerNode = newNode;
                    }

                    Debug.Assert(currentInnerNode.intervalTo == vertexCount);

                    // add leaf
                    Leaf newLeaf = new Leaf(ptdur, currentInnerNode);
                    currentInnerNode.AddChild(ptdur.vertices, newLeaf);
                    currentNode = newLeaf;

                    return(newLeaf);
                }
            }while (!currentNode.isLeaf);


            // test if a ptdur exists in this leaf that is 'better' than the one to add or vice versa
            Leaf currentNodeAsLeaf = currentNode as Leaf;

            currentNodeAsLeaf.ptdur = ptdur;
            return(currentNodeAsLeaf);
        }
Пример #11
0
        public static PTD ExtendToPMC_Rule2(PTD Tau_wiggle, BitSet vNeighbors, ImmutableGraph graph)
        {
            BitSet     bag      = new BitSet(vNeighbors);
            List <PTD> children = new List <PTD>(Tau_wiggle.children);
            BitSet     vertices = new BitSet(Tau_wiggle.vertices);

            vertices.UnionWith(vNeighbors);

            BitSet outlet = graph.Outlet(bag, vertices);
            BitSet inlet  = new BitSet(vertices);

            inlet.ExceptWith(outlet);
            return(new PTD(bag, vertices, outlet, inlet, children));
        }
Пример #12
0
        public static PTD ExtendToPMC_Rule3(PTD Tau_wiggle, BitSet newRoot, ImmutableGraph graph)
        {
            Debug.Assert(newRoot.IsSupersetOf(Tau_wiggle.Bag));
            BitSet bag      = newRoot;
            BitSet vertices = new BitSet(Tau_wiggle.vertices);

            vertices.UnionWith(newRoot);
            List <PTD> children = new List <PTD>(Tau_wiggle.children);

            BitSet outlet = graph.Outlet(bag, vertices);
            BitSet inlet  = new BitSet(vertices);

            inlet.ExceptWith(outlet);
            return(new PTD(bag, vertices, outlet, inlet, children));
        }
Пример #13
0
        /// <summary>
        /// queries this sieve to find all candidate ptdurs that a ptd might be able to be attached to
        /// </summary>
        /// <param name="ptd">the ptd to find candidate parents for</param>
        /// <returns>an enumerable of candidate ptdurs that the ptd might be able to be attached to</returns>
        public IEnumerable <PTD> GetCandidatePTDURs(PTD ptd)
        {
            Stack <(InnerNode, int)> nodeStack = new Stack <(InnerNode, int)>();

            nodeStack.Push((startNode, 0));

            // perform depth-first search
            while (nodeStack.Count > 0)
            {
                // get the current node and the current i-value for that node
                (InnerNode currentNode, int currentI) = nodeStack.Pop();

                // process all children of current node
                for (int j = 0; j < currentNode.children.Count; j++)
                {
                    (BitSet intervalBitSet, SieveNode child) = currentNode.children[j];
                    // test if child is a candidate vertex-wise
                    if (ptd.inlet.IsDisjointOnInterval(intervalBitSet, currentNode.intervalFrom, currentNode.intervalTo))
                    {
                        // test if margin is large enough. If not, prune this child by doing nothing
                        int nextI = currentI + (int)ptd.outlet.CountOnIntervalExcept(intervalBitSet, currentNode.intervalFrom, currentNode.intervalTo);
                        if (nextI <= margin)
                        {
                            // return ptdur if the child is a leaf
                            if (child.isLeaf)
                            {
                                Leaf leaf = child as Leaf;
                                Debug.Assert(child != null);
                                yield return(leaf.ptdur);
                            }
                            // put the child on the stack if it is not a leaf
                            else
                            {
                                InnerNode nextNode = child as InnerNode;
                                Debug.Assert(nextNode != null);
                                nodeStack.Push((nextNode, nextI));
                            }
                        }
                    }
                }
            }
        }
Пример #14
0
        /// <summary>
        /// reindexes the vertices of this ptd that is a ptd of a reduced graph, so that they correctly represent the same vertices in the non-reduced graph.
        /// </summary>
        /// <param name="reindexationMapping">the mapping from the vertex indices in the current ptd to their original vertex indices within the original graph.</param>
        public void Reindex(ReindexationMapping reindexationMapping)
        {
            // initialize a stack of nodes
            Stack <PTD> nodeStack = new Stack <PTD>();

            nodeStack.Push(this);

            // re-index all bags with the vertices they had before reduction
            while (nodeStack.Count > 0)
            {
                PTD    currentNode = nodeStack.Pop();
                BitSet reducedBag  = currentNode.Bag;

                BitSet reconstructedBag = reindexationMapping.Reindex(reducedBag);
                currentNode.SetBag(reconstructedBag);

                // push children onto stack
                for (int i = 0; i < currentNode.children.Count; i++)
                {
                    nodeStack.Push(currentNode.children[i]);
                }
            }
        }
Пример #15
0
        /// <summary>
        /// computes the outlet of the union of a ptd with a component
        /// </summary>
        /// <param name="ptd">the ptd</param>
        /// <param name="component">the component</param>
        /// <returns>the vertices in the outlet of ptd that are adjacent to vertices that are neither contained in the ptd nor in the component</returns>
        public BitSet UnionOutlet(PTD ptd, BitSet component)
        {
            BitSet unionOutlet   = new BitSet(vertexCount);
            BitSet unionVertices = new BitSet(ptd.vertices);

            unionVertices.UnionWith(component);

            List <int> outletVertices = ptd.outlet.Elements();

            for (int i = 0; i < outletVertices.Count; i++)
            {
                int u = outletVertices[i];
                for (int j = 0; j < adjacencyList[u].Length; j++)
                {
                    int v = adjacencyList[u][j];
                    if (!unionVertices[v])
                    {
                        unionOutlet[u] = true;
                        break;
                    }
                }
            }
            return(unionOutlet);
        }
Пример #16
0
        public static bool AddPTDToPTDUR_CheckBagSize_CheckPossiblyUsable_CheckCliquish(PTD Tau_prime, PTD Tau, ImmutableGraph graph, int k, out PTD result, Graph mutableGraph)
        {
            // return early if bag would get too big
            uint futureBagSize = BitSet.CountUnion(Tau_prime.Bag, Tau.outlet);

            if (futureBagSize > k + 1)
            {
                result = null;
                return(false);
            }

            BitSet bag = new BitSet(Tau_prime.Bag);

            bag.UnionWith(Tau.outlet);

            return(AddPTDToPTDUR_CheckPossiblyUsable_CheckCliquish_Helper(Tau_prime, Tau, graph, out result, bag, futureBagSize, k, mutableGraph));
        }
 /// <summary>
 /// Marks a ptdur for later addition to the sieve. The eventual addition needs to be initiated by calling the FlushAdd method.
 /// The reason for adding the ptdur later is that, during a query of a block sieve, a potential splitting of a node in that sieve
 /// will confuse the query method. Also in our case the later addition does not cause problems because the ptdur is always a child
 /// of the currently queried ptd and, thus, combining them will always lead to a ptdur that is not possibly usable.
 /// </summary>
 /// <param name="ptdur">the ptdur to add</param>
 public void DeferredAdd(PTD ptdur)
 {
     ptdurToDeferredAdditionIndexMapping.Add(ptdur, toAdd.Count);
     toAdd.Add(ptdur);
 }
Пример #18
0
        /// <summary>
        /// a method extracted from the method above due to performance reasons. Read it as if the body of the method above would just continue here.
        /// </summary>
        /// <param name="Tau_prime">the ptdur</param>
        /// <param name="Tau">the ptd</param>
        /// <param name="graph">the underlying graph</param>
        /// <param name="result">the resulting ptd, or null if the return value is false</param>
        /// <param name="bag">the bag of the ptd to be</param>
        /// <returns>true, iff the resulting ptd is possibly usable</returns>
        private static bool AddPTDToPTDUR_CheckPossiblyUsable_CheckCliquish_Helper(PTD Tau_prime, PTD Tau, ImmutableGraph graph, out PTD result, BitSet bag, uint futureBagSize, int k, Graph mutableGraph)
        {
            List <PTD> children = new List <PTD>(Tau_prime.children);

            children.Add(Tau);

            // exit early if not possibly usable
            if (!IsPossiblyUsable(children, graph))
            {
                result = null;
                return(false);
            }

            // if no vertices can be added to the bag due to size and the bag is not a pmc, we can reject this ptd immediately because it is not useful
            if (futureBagSize == k + 1 && !graph.IsPotMaxClique(bag))
            {
                result = null;
                return(false);
            }


            if (!graph.IsCliquish(bag))
            {
                result = null;
                return(false);
            }

            // if only one vertex can be added, determine all the candidates that would make this bag a pmc when added. If there are none, return.
            if (testIfAddingOneVertexToBagFormsPMC && futureBagSize == k)
            {
                // if bag is pmc already, we need this ptdur. (In that case no candidate exists which could be added.)
                if (!graph.IsPotMaxClique(bag))
                {
                    bool useless = true;

                    foreach ((BitSet component, BitSet neighbor) in graph.ComponentsAndNeighbors(bag))
                    {
                        // candidates are only found in full components
                        if (neighbor.Equals(bag) && !component.Intersects(Tau_prime.vertices) && !component.Intersects(Tau.vertices))
                        {
                            if (neighborsFirst)
                            {
                                onlyNeighborStopwatch.Start();
                                // test if a vertex in the bag has exactly one neighbor in this component, and the bag plus that vertex is still cliquish
                                foreach (int v in bag.Elements())
                                {
                                    BitSet neighbors = new BitSet(graph.openNeighborhood[v]);
                                    neighbors.IntersectWith(component);
                                    if (neighbors.Count() == 1)
                                    {
                                        int candidate = neighbors.First();
                                        bag[candidate] = true;
                                        if (graph.IsCliquish(bag))  // in this case it is guaranteed that the bag is also a pmc
                                        {
                                            Debug.Assert(graph.IsPotMaxClique(bag));
                                            bag[candidate] = false;
                                            useless        = false;
                                            break;
                                        }
                                        bag[candidate] = false;
                                    }
                                }
                                onlyNeighborStopwatch.Stop();

                                if (!useless)
                                {
                                    break;
                                }
                            }

                            articulationPointCandidatesStopwatch.Start();
                            // find articulation points within this component
                            foreach (int articulationPoint in SafeSeparator.ArticulationPoints(mutableGraph, component))
                            {
                                bag[articulationPoint] = true;
                                if (graph.IsPotMaxClique(bag))
                                {
                                    bag[articulationPoint] = false;
                                    useless = false;
                                    break;
                                }
                                bag[articulationPoint] = false;
                            }
                            articulationPointCandidatesStopwatch.Stop();
                            if (!useless)
                            {
                                break;
                            }

                            if (!neighborsFirst)
                            {
                                onlyNeighborStopwatch.Start();
                                // test if a vertex in the bag has exactly one neighbor in this component, and the bag plus that vertex is still cliquish
                                foreach (int v in bag.Elements())
                                {
                                    BitSet neighbors = new BitSet(graph.openNeighborhood[v]);
                                    neighbors.IntersectWith(component);
                                    if (neighbors.Count() == 1)
                                    {
                                        int candidate = neighbors.First();
                                        bag[candidate] = true;
                                        if (graph.IsCliquish(bag))  // in this case it is guaranteed that the bag is also a pmc
                                        {
                                            Debug.Assert(graph.IsPotMaxClique(bag));
                                            bag[candidate] = false;
                                            useless        = false;
                                            break;
                                        }
                                        bag[candidate] = false;
                                    }
                                }
                                onlyNeighborStopwatch.Stop();

                                if (!useless)
                                {
                                    break;
                                }
                            }


                            // TODO: possibly exclude candidates that are in this ptdur's inlet? Is that correct?
                        }
                    }

                    if (useless)
                    {
                        result = null;
                        return(false);
                    }
                }
            }

            // usability is established, so we build the ptd
            BitSet vertices = new BitSet(Tau_prime.vertices);

            vertices.UnionWith(Tau.vertices);
            BitSet outlet = graph.Outlet(bag, vertices);
            BitSet inlet  = new BitSet(vertices);

            inlet.ExceptWith(outlet);

            result = new PTD(new BitSet(bag), vertices, outlet, inlet, children);

            return(true);
        }
Пример #19
0
 /// <summary>
 /// tests whether this and the other PTD are PTDs that contain the same vertices within them
 /// </summary>
 /// <param name="other">the other PTD</param>
 /// <returns>true iff the PTDs contain the same vertices</returns>
 public bool Equivalent(PTD other)
 {
     return(inlet.Equals(other.inlet));
 }
Пример #20
0
        /// <summary>
        /// asserts that this ptd is actually a tree decomposition for the given graph
        /// </summary>
        /// <param name="graph">the graph that this ptd is supposed to be a tree decomposition of</param>
        public void AssertValidTreeDecomposition(ImmutableGraph graph)
        {
            // create a list of all bags
            List <BitSet> bagsList      = new List <BitSet>();
            List <int>    parentBags    = new List <int>();
            Stack <PTD>   childrenStack = new Stack <PTD>();
            Stack <int>   parentStack   = new Stack <int>();

            childrenStack.Push(this);
            parentStack.Push(-1);
            while (childrenStack.Count > 0)
            {
                PTD current = childrenStack.Pop();
                int parent  = parentStack.Pop();

                bagsList.Add(current.Bag);
                parentBags.Add(parent);
                foreach (PTD child in current.children)
                {
                    childrenStack.Push(child);
                    parentStack.Push(bagsList.Count - 1);
                }
            }

            // check vertex cover
            for (int i = 0; i < graph.vertexCount; i++)
            {
                bool isCovered = false;
                foreach (BitSet bag in bagsList)
                {
                    if (bag[i])
                    {
                        isCovered = true;
                        break;
                    }
                }
                if (!isCovered)
                {
                    Print();
                    Trace.Fail(String.Format("The printed ptd for graph {0} does not cover all of the graph's vertices. Vertex {1} is not covered.", graph.graphID, i));
                }
            }

            // check edge cover
            for (int u = 0; u < graph.vertexCount; u++)
            {
                foreach (int v in graph.adjacencyList[u])
                {
                    bool isCovered = false;
                    foreach (BitSet bag in bagsList)
                    {
                        if (bag[u] && bag[v])
                        {
                            isCovered = true;
                            break;
                        }
                    }
                    if (!isCovered)
                    {
                        Print();
                        Trace.Fail(String.Format("The printed ptd for graph {0} does not cover all of the graph's edges. Edge ({1},{2}) is not covered.", graph.graphID, u, v));
                    }
                }
            }

            // check consistency
            for (int i = 0; i < graph.vertexCount; i++)
            {
                //if (possiblyUsableIgnore[i])
                //{
                //    continue;
                //}

                /*
                 *  key insight: all bags containing i form a subtree.
                 *  Therefore, in order for the tree decomposition to be consistent, there must be only one root for all subtrees containing i
                 */
                HashSet <int> ancestors = new HashSet <int>();
                for (int j = 0; j < bagsList.Count; j++)
                {
                    if (bagsList[j][i] == true)
                    {
                        int currentAncestor = j;
                        int parentBag       = parentBags[j];
                        while (parentBag != -1 && bagsList[parentBag][i])
                        {
                            currentAncestor = parentBag;
                            parentBag       = parentBags[currentAncestor];
                            ;
                        }
                        ancestors.Add(currentAncestor);
                        if (ancestors.Count == 2)
                        {
                            Print();
                            Trace.Fail(String.Format("The printed ptd for graph {0} is not consistent. There are at least two subtrees containing vertex {1}.", graph.graphID, i));
                        }
                    }
                }
            }
        }
Пример #21
0
 /// <summary>
 /// constructs a leaf initialized with a given ptdur and a reference to the leaf's parent within the sieve
 /// </summary>
 /// <param name="ptdur">the initial ptdur at this leaf</param>
 /// <param name="parent">the leaf's parent</param>
 public Leaf(PTD ptdur, InnerNode parent)
 {
     isLeaf      = true;
     this.ptdur  = ptdur;
     this.parent = parent;
 }
Пример #22
0
        /// <summary>
        /// imports a PTD from a .td file
        /// </summary>
        /// <param name="filepath">the path to that file</param>
        public static PTD ImportPTD(string filepath)
        {
            PTD[]  nodesList = null;
            bool[] isChild   = null;
            try
            {
                using (StreamReader sr = new StreamReader(filepath))
                {
                    int vertexCount = -1;
                    while (!sr.EndOfStream)
                    {
                        String line = sr.ReadLine();
                        if (line.StartsWith("c"))
                        {
                            continue;
                        }
                        else
                        {
                            String[] tokens = line.Split(' ');
                            if (tokens[0] == "s")
                            {
                                int nodesCount = Convert.ToInt32(tokens[2]);
                                nodesList   = new PTD[nodesCount];
                                isChild     = new bool[nodesCount];
                                vertexCount = Convert.ToInt32(tokens[4]);
                                // everything else not really relevant for our purposes here
                                continue;
                            }
                            else if (tokens[0] == "b")
                            {
                                int    nodePosition = Convert.ToInt32(tokens[1]) - 1;
                                BitSet bag          = new BitSet(vertexCount);
                                for (int i = 2; i < tokens.Length; i++)
                                {
                                    bag[Convert.ToInt32(tokens[i]) - 1] = true;
                                }
                                nodesList[nodePosition] = new PTD(bag);
                            }
                            else
                            {
                                int from = Convert.ToInt32(tokens[0]) - 1;
                                int to   = Convert.ToInt32(tokens[1]) - 1;
                                nodesList[from].children.Add(nodesList[to]);
                                isChild[to] = true;
                            }
                        }
                    }
                }
            }
            catch (IOException e)
            {
                Console.WriteLine("The file could not be read:");
                Console.WriteLine(e.Message);
            }

            // find root
            for (int i = 0; i < nodesList.Length; i++)
            {
                if (!isChild[i])
                {
                    return(nodesList[i]);
                }
            }
            throw new Exception("The imported tree decomposition is not a tree");
        }