/// <summary> /// Multiplies two matrices and updates another with the result. <c>c = alpha*op(a)*op(b) + beta*c</c> /// </summary> /// <param name="transposeA">How to transpose the <paramref name="a"/> matrix.</param> /// <param name="transposeB">How to transpose the <paramref name="b"/> matrix.</param> /// <param name="alpha">The value to scale <paramref name="a"/> matrix.</param> /// <param name="a">The a matrix.</param> /// <param name="rowsA">The number of rows in the <paramref name="a"/> matrix.</param> /// <param name="columnsA">The number of columns in the <paramref name="a"/> matrix.</param> /// <param name="b">The b matrix</param> /// <param name="rowsB">The number of rows in the <paramref name="b"/> matrix.</param> /// <param name="columnsB">The number of columns in the <paramref name="b"/> matrix.</param> /// <param name="beta">The value to scale the <paramref name="c"/> matrix.</param> /// <param name="c">The c matrix.</param> public virtual void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, Complex alpha, Complex[] a, int rowsA, int columnsA, Complex[] b, int rowsB, int columnsB, Complex beta, Complex[] c) { int m; // The number of rows of matrix op(A) and of the matrix C. int n; // The number of columns of matrix op(B) and of the matrix C. int k; // The number of columns of matrix op(A) and the rows of the matrix op(B). // First check some basic requirement on the parameters of the matrix multiplication. if (a == null) { throw new ArgumentNullException("a"); } if (b == null) { throw new ArgumentNullException("b"); } if ((int) transposeA > 111 && (int) transposeB > 111) { if (rowsA != columnsB) { throw new ArgumentOutOfRangeException(); } if (columnsA*rowsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = columnsA; n = rowsB; k = rowsA; } else if ((int) transposeA > 111) { if (rowsA != rowsB) { throw new ArgumentOutOfRangeException(); } if (columnsA*columnsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = columnsA; n = columnsB; k = rowsA; } else if ((int) transposeB > 111) { if (columnsA != columnsB) { throw new ArgumentOutOfRangeException(); } if (rowsA*rowsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = rowsA; n = rowsB; k = columnsA; } else { if (columnsA != rowsB) { throw new ArgumentOutOfRangeException(); } if (rowsA*columnsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = rowsA; n = columnsB; k = columnsA; } if (alpha.IsZero() && beta.IsZero()) { Array.Clear(c, 0, c.Length); return; } // Check whether we will be overwriting any of our inputs and make copies if necessary. // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory // as result, we can do it on a row wise basis. We should investigate this. Complex[] adata; if (ReferenceEquals(a, c)) { adata = (Complex[]) a.Clone(); } else { adata = a; } Complex[] bdata; if (ReferenceEquals(b, c)) { bdata = (Complex[]) b.Clone(); } else { bdata = b; } if (beta.IsZero()) { Array.Clear(c, 0, c.Length); } else if (!beta.IsOne()) { ScaleArray(beta, c, c); } if (alpha.IsZero()) { return; } CacheObliviousMatrixMultiply(transposeA, transposeB, alpha, adata, 0, 0, bdata, 0, 0, c, 0, 0, m, n, k, m, n, k, true); }
/// <summary> /// Multiples two matrices. <c>result = x * y</c> /// </summary> /// <param name="x">The x matrix.</param> /// <param name="rowsX">The number of rows in the x matrix.</param> /// <param name="columnsX">The number of columns in the x matrix.</param> /// <param name="y">The y matrix.</param> /// <param name="rowsY">The number of rows in the y matrix.</param> /// <param name="columnsY">The number of columns in the y matrix.</param> /// <param name="result">Where to store the result of the multiplication.</param> /// <remarks>This is a simplified version of the BLAS GEMM routine with alpha /// set to 1.0 and beta set to 0.0, and x and y are not transposed.</remarks> public virtual void MatrixMultiply(Complex[] x, int rowsX, int columnsX, Complex[] y, int rowsY, int columnsY, Complex[] result) { // First check some basic requirement on the parameters of the matrix multiplication. if (x == null) { throw new ArgumentNullException("x"); } if (y == null) { throw new ArgumentNullException("y"); } if (result == null) { throw new ArgumentNullException("result"); } if (rowsX*columnsX != x.Length) { throw new ArgumentException("x.Length != xRows * xColumns"); } if (rowsY*columnsY != y.Length) { throw new ArgumentException("y.Length != yRows * yColumns"); } if (columnsX != rowsY) { throw new ArgumentException("xColumns != yRows"); } if (rowsX*columnsY != result.Length) { throw new ArgumentException("xRows * yColumns != result.Length"); } // Check whether we will be overwriting any of our inputs and make copies if necessary. // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory // as result, we can do it on a row wise basis. We should investigate this. Complex[] xdata; if (ReferenceEquals(x, result)) { xdata = (Complex[]) x.Clone(); } else { xdata = x; } Complex[] ydata; if (ReferenceEquals(y, result)) { ydata = (Complex[]) y.Clone(); } else { ydata = y; } Array.Clear(result, 0, result.Length); CacheObliviousMatrixMultiply(Transpose.DontTranspose, Transpose.DontTranspose, Complex.One, xdata, 0, 0, ydata, 0, 0, result, 0, 0, rowsX, columnsY, columnsX, rowsX, columnsY, columnsX, true); }
/// <summary> /// Multiples two matrices. <c>result = x * y</c> /// </summary> /// <param name="x">The x matrix.</param> /// <param name="xRows">The number of rows in the x matrix.</param> /// <param name="xColumns">The number of columns in the x matrix.</param> /// <param name="y">The y matrix.</param> /// <param name="yRows">The number of rows in the y matrix.</param> /// <param name="yColumns">The number of columns in the y matrix.</param> /// <param name="result">Where to store the result of the multiplication.</param> /// <remarks>This is a simplified version of the BLAS GEMM routine with alpha /// set to 1.0 and beta set to 0.0, and x and y are not transposed.</remarks> public void MatrixMultiply(Complex[] x, int xRows, int xColumns, Complex[] y, int yRows, int yColumns, Complex[] result) { // First check some basic requirement on the parameters of the matrix multiplication. if (x == null) { throw new ArgumentNullException("x"); } if (y == null) { throw new ArgumentNullException("y"); } if (result == null) { throw new ArgumentNullException("result"); } if (xRows * xColumns != x.Length) { throw new ArgumentException("x.Length != xRows * xColumns"); } if (yRows * yColumns != y.Length) { throw new ArgumentException("y.Length != yRows * yColumns"); } if (xColumns != yRows) { throw new ArgumentException("xColumns != yRows"); } if (xRows * yColumns != result.Length) { throw new ArgumentException("xRows * yColumns != result.Length"); } // Check whether we will be overwriting any of our inputs and make copies if necessary. // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory // as result, we can do it on a row wise basis. We should investigate this. Complex[] xdata; if (ReferenceEquals(x, result)) { xdata = (Complex[]) x.Clone(); } else { xdata = x; } Complex[] ydata; if (ReferenceEquals(y, result)) { ydata = (Complex[]) y.Clone(); } else { ydata = y; } // Start the actual matrix multiplication. // TODO - For small matrices we should get rid of the parallelism because of startup costs. // Perhaps the following implementations would be a good one // http://blog.feradz.com/2009/01/cache-efficient-matrix-multiplication/ MatrixMultiplyWithUpdate(Transpose.DontTranspose, Transpose.DontTranspose, Complex.One, x, xRows, xColumns, y, yRows, yColumns, Complex.Zero, result); }
private ComplexMatrix(int rows, int columns, Complex[] entries) { this.rows = rows; this.columns = columns; this.entries = (Complex[])entries.Clone(); }
/// <summary> /// Multiplies two matrices and updates another with the result. <c>c = alpha*op(a)*op(b) + beta*c</c> /// </summary> /// <param name="transposeA">How to transpose the <paramref name="a"/> matrix.</param> /// <param name="transposeB">How to transpose the <paramref name="b"/> matrix.</param> /// <param name="alpha">The value to scale <paramref name="a"/> matrix.</param> /// <param name="a">The a matrix.</param> /// <param name="aRows">The number of rows in the <paramref name="a"/> matrix.</param> /// <param name="aColumns">The number of columns in the <paramref name="a"/> matrix.</param> /// <param name="b">The b matrix</param> /// <param name="bRows">The number of rows in the <paramref name="b"/> matrix.</param> /// <param name="bColumns">The number of columns in the <paramref name="b"/> matrix.</param> /// <param name="beta">The value to scale the <paramref name="c"/> matrix.</param> /// <param name="c">The c matrix.</param> public void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, Complex alpha, Complex[] a, int aRows, int aColumns, Complex[] b, int bRows, int bColumns, Complex beta, Complex[] c) { // Choose nonsensical values for the number of rows and columns in c; fill them in depending // on the operations on a and b. int cRows = -1; int cColumns = -1; // First check some basic requirement on the parameters of the matrix multiplication. if (a == null) { throw new ArgumentNullException("a"); } if (b == null) { throw new ArgumentNullException("b"); } if ((int)transposeA > 111 && (int)transposeB > 111) { if (aRows != bColumns) { throw new ArgumentOutOfRangeException(); } if (aColumns * bRows != c.Length) { throw new ArgumentOutOfRangeException(); } cRows = aColumns; cColumns = bRows; } else if ((int)transposeA > 111) { if (aRows != bRows) { throw new ArgumentOutOfRangeException(); } if (aColumns * bColumns != c.Length) { throw new ArgumentOutOfRangeException(); } cRows = aColumns; cColumns = bColumns; } else if ((int)transposeB > 111) { if (aColumns != bColumns) { throw new ArgumentOutOfRangeException(); } if (aRows * bRows != c.Length) { throw new ArgumentOutOfRangeException(); } cRows = aRows; cColumns = bRows; } else { if (aColumns != bRows) { throw new ArgumentOutOfRangeException(); } if (aRows * bColumns != c.Length) { throw new ArgumentOutOfRangeException(); } cRows = aRows; cColumns = bColumns; } if (alpha == 0.0 && beta == 0.0) { Array.Clear(c, 0, c.Length); return; } // Check whether we will be overwriting any of our inputs and make copies if necessary. // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory // as result, we can do it on a row wise basis. We should investigate this. Complex[] adata; if (ReferenceEquals(a, c)) { adata = (Complex[])a.Clone(); } else { adata = a; } Complex[] bdata; if (ReferenceEquals(b, c)) { bdata = (Complex[])b.Clone(); } else { bdata = b; } if (alpha == 1.0) { if (beta == 0.0) { if ((int)transposeA > 111 && (int)transposeB > 111) { Parallel.For(0, aColumns, j => { int jIndex = j * cRows; for (int i = 0; i != bRows; i++) { int iIndex = i * aRows; Complex s = 0; for (int l = 0; l != bColumns; l++) { s += adata[iIndex + l] * bdata[l * bRows + j]; } c[jIndex + i] = s; } }); } else if ((int)transposeA > 111) { Parallel.For(0, bColumns, j => { int jcIndex = j * cRows; int jbIndex = j * bRows; for (int i = 0; i != aColumns; i++) { int iIndex = i * aRows; Complex s = 0; for (int l = 0; l != aRows; l++) { s += adata[iIndex + l] * bdata[jbIndex + l]; } c[jcIndex + i] = s; } }); } else if ((int)transposeB > 111) { Parallel.For(0, bRows, j => { int jIndex = j * cRows; for (int i = 0; i != aRows; i++) { Complex s = 0; for (int l = 0; l != aColumns; l++) { s += adata[l * aRows + i] * bdata[l * bRows + j]; } c[jIndex + i] = s; } }); } else { Parallel.For(0, bColumns, j => { int jcIndex = j * cRows; int jbIndex = j * bRows; for (int i = 0; i != aRows; i++) { Complex s = 0; for (int l = 0; l != aColumns; l++) { s += adata[l * aRows + i] * bdata[jbIndex + l]; } c[jcIndex + i] = s; } }); } } else { if ((int)transposeA > 111 && (int)transposeB > 111) { Parallel.For(0, aColumns, j => { int jIndex = j * cRows; for (int i = 0; i != bRows; i++) { int iIndex = i * aRows; Complex s = 0; for (int l = 0; l != bColumns; l++) { s += adata[iIndex + l] * bdata[l * bRows + j]; } c[jIndex + i] = c[jIndex + i] * beta + s; } }); } else if ((int)transposeA > 111) { Parallel.For(0, bColumns, j => { int jcIndex = j * cRows; int jbIndex = j * bRows; for (int i = 0; i != aColumns; i++) { int iIndex = i * aRows; Complex s = 0; for (int l = 0; l != aRows; l++) { s += adata[iIndex + l] * bdata[jbIndex + l]; } c[jcIndex + i] = s + c[jcIndex + i] * beta; } }); } else if ((int)transposeB > 111) { Parallel.For(0, bRows, j => { int jIndex = j * cRows; for (int i = 0; i != aRows; i++) { Complex s = 0; for (int l = 0; l != aColumns; l++) { s += adata[l * aRows + i] * bdata[l * bRows + j]; } c[jIndex + i] = s + c[jIndex + i] * beta; } }); } else { Parallel.For(0, bColumns, j => { int jcIndex = j * cRows; int jbIndex = j * bRows; for (int i = 0; i != aRows; i++) { Complex s = 0; for (int l = 0; l != aColumns; l++) { s += adata[l * aRows + i] * bdata[jbIndex + l]; } c[jcIndex + i] = s + c[jcIndex + i] * beta; } }); } } } else { if ((int)transposeA > 111 && (int)transposeB > 111) { Parallel.For(0, aColumns, j => { int jIndex = j * cRows; for (int i = 0; i != bRows; i++) { int iIndex = i * aRows; Complex s = 0; for (int l = 0; l != bColumns; l++) { s += adata[iIndex + l] * bdata[l * bRows + j]; } c[jIndex + i] = c[jIndex + i] * beta + alpha * s; } }); } else if ((int)transposeA > 111) { Parallel.For(0, bColumns, j => { int jcIndex = j * cRows; int jbIndex = j * bRows; for (int i = 0; i != aColumns; i++) { int iIndex = i * aRows; Complex s = 0; for (int l = 0; l != aRows; l++) { s += adata[iIndex + l] * bdata[jbIndex + l]; } c[jcIndex + i] = alpha * s + c[jcIndex + i] * beta; } }); } else if ((int)transposeB > 111) { Parallel.For(0, bRows, j => { int jIndex = j * cRows; for (int i = 0; i != aRows; i++) { Complex s = 0; for (int l = 0; l != aColumns; l++) { s += adata[l * aRows + i] * bdata[l * bRows + j]; } c[jIndex + i] = alpha * s + c[jIndex + i] * beta; } }); } else { Parallel.For(0, bColumns, j => { int jcIndex = j * cRows; int jbIndex = j * bRows; for (int i = 0; i != aRows; i++) { Complex s = 0; for (int l = 0; l != aColumns; l++) { s += adata[l * aRows + i] * bdata[jbIndex + l]; } c[jcIndex + i] = alpha * s + c[jcIndex + i] * beta; } }); } } }