Пример #1
0
        private static void TestOnSet(Word2Vec w2vIm, Word2Vec w2vOm)
        {
            string inText = "He was diagnosed early on set dementia 3 years ago.";

            TextObj         textObj    = new TextObj(inText);
            List <TokenObj> inTextList = textObj.GetTokenList();
            // remove space token from the list
            List <TokenObj> nonSpaceTokenList = TextObj.GetNonSpaceTokenObjList(inTextList);

            Console.WriteLine("==========================================");
            Console.WriteLine("-- inTextList: [" + inText + "]");
            int  tarPos           = 4;
            int  tarSize          = 2;   // "on set" has 2 tokens
            int  radius           = 2;
            bool word2VecSkipWord = true;
            bool debugFlag        = false;
            // 1 context with window radius
            DoubleVec    contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, w2vIm, radius, word2VecSkipWord, debugFlag);
            string       str1       = "onset";
            ContextScore s1         = new ContextScore(str1, contextVec, w2vOm);
            string       str2       = "on set";
            ContextScore s2         = new ContextScore(str2, contextVec, w2vOm);

            Console.WriteLine("- [" + str1 + "]: " + s1.ToString());
            Console.WriteLine("- [" + str2 + "]: " + s2.ToString());
        }
        // return the best ranked str from candidates using word2Vec score
        // inTokenList, includes space token, is not coreTerm.Lc
        // return null if no candidate is found to correct
        public static MergeObj GetTopRankMergeObj(HashSet <MergeObj> candidates, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, double rwMergeFactor, bool debugFlag)
        {
            // init the topRankMergeObj
            MergeObj topRankMergeObj = null;

            if (candidates.Count > 0)
            {
                // 1. find sorted score list for each candidates ...
                List <ContextScore> candScoreList = GetCandidateScoreList(candidates, nonSpaceTokenList, word2VecIm, word2VecOm, word2VecSkipWord, contextRadius, debugFlag);
                // 2. find the top ranked str
                // the 0 element has the highest score because it is sorted
                // only 1 candidate, use it for nonWord
                ContextScore topContextScore = null;
                if (candScoreList.Count > 0)
                {
                    topContextScore = candScoreList[0];
                }
                // 3. find the mergeObj from the topRankStr (if exist)
                if (topContextScore != null)
                {
                    // 3.1. convert mergeObj set to string set
                    // key: coreMergeWord, MergeObj
                    Dictionary <string, MergeObj> candStrMergeObjMap = new Dictionary <string, MergeObj>();
                    foreach (MergeObj mergeObj in candidates)
                    {
                        string mergeWord = mergeObj.GetCoreMergeWord();
                        candStrMergeObjMap[mergeWord] = mergeObj;
                    }
                    HashSet <string> andStrSet = new HashSet <string>(candStrMergeObjMap.Keys);
                    // 3.2 convert back from top rank str to MergeObj
                    // topRankStr should never be null because candidates is > 0
                    string topRankStr = topContextScore.GetTerm();
                    topRankMergeObj = candStrMergeObjMap.GetValueOrNull(topRankStr);
                    // 4. compare the top rank merge to the original string b4 merge
                    // 1. get the word2Vec score for the orgMergeTerm b4 merge
                    // 1.1 wordVec for context
                    int tarPos = topRankMergeObj.GetStartPos();
                    // tarSize is the total token No of the orgMergeWords
                    int       tarSize    = topRankMergeObj.GetEndPos() - topRankMergeObj.GetStartPos() + 1;
                    DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
                    // 1.2 wordVec for the original words before merge
                    string       orgMergeWord    = topRankMergeObj.GetOrgMergeWord();
                    ContextScore orgContextScore = new ContextScore(orgMergeWord, contextVec, word2VecOm);
                    // validate top merge candidate, set to null if false
                    if (IsTopCandValid(orgContextScore, topContextScore, rwMergeFactor, debugFlag) == false)
                    {
                        // set to null if score is not good enough for corection
                        topRankMergeObj = null;
                    }
                }
            }
            return(topRankMergeObj);
        }
Пример #3
0
        // private method
        // Test merge and Split
        private static void Test(string inText, int tarPos, int tarSize, int radius, string mergedWord, string splitWords, Word2Vec w2vIm, Word2Vec w2vOm)
        {
            // 0. process the inText
            TextObj         textObj    = new TextObj(inText);
            List <TokenObj> inTextList = textObj.GetTokenList();
            // remove space token from the list
            List <TokenObj> nonSpaceTokenList = TextObj.GetNonSpaceTokenObjList(inTextList);

            Console.WriteLine("==========================================");
            Console.WriteLine("-- inTextList: [" + inText + "]");
            bool word2VecSkipWord = true;
            bool debugFlag        = false;
            // 1.a context with window radius
            DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, w2vIm, radius, word2VecSkipWord, debugFlag);
            // 1.b context with all inText
            DoubleVec contextVecA = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, w2vIm, word2VecSkipWord, debugFlag);
            // 1.c get score1
            ContextScore score1  = new ContextScore(mergedWord, contextVec, w2vOm);
            ContextScore score1a = new ContextScore(mergedWord, contextVecA, w2vOm);

            Console.WriteLine(score1.ToString() + "|" + string.Format("{0,1:F8}", score1a.GetScore()));
            // 2. split words
            ContextScore score2  = new ContextScore(splitWords, contextVec, w2vOm);
            ContextScore score2a = new ContextScore(splitWords, contextVecA, w2vOm);

            Console.WriteLine(score2.ToString() + "|" + string.Format("{0,1:F8}", score2a.GetScore()));
            // 3. 3. 3. Use avg. score on single words
            // This method use different context for each single word
            List <string> splitWordList = TermUtil.ToWordList(splitWords);
            int           index         = 0;
            double        scoreSAvg     = 0.0d;  // radius
            double        scoreSAAvg    = 0.0d;  // all inText

            //debugFlag = false;
            foreach (string splitWord in splitWordList)
            {
                // window radius
                DoubleVec    contextVecS = Word2VecContext.GetContextVec(tarPos + index, 1, nonSpaceTokenList, w2vIm, radius, word2VecSkipWord, debugFlag);
                ContextScore scoreS      = new ContextScore(splitWord, contextVecS, w2vOm);
                //System.out.println("-- " + scoreS.ToString());
                scoreSAvg += scoreS.GetScore();
                // all text
                DoubleVec    contextVecSA = Word2VecContext.GetContextVec(tarPos + index, 1, nonSpaceTokenList, w2vIm, word2VecSkipWord, debugFlag);
                ContextScore scoreSA      = new ContextScore(splitWord, contextVecSA, w2vOm);
                //System.out.println("-- " + scoreSA.ToString());
                scoreSAAvg += scoreSA.GetScore();
                index++;
            }
            scoreSAvg  = scoreSAvg / index;            // window
            scoreSAAvg = scoreSAAvg / index;           // all text
            Console.WriteLine("Avg. Single Word|" + string.Format("{0,1:F8}", scoreSAvg) + "|" + string.Format("{0,1:F8}", scoreSAAvg));
        }
        private static bool CheckRealWord1To1Rules(ContextScore topContextScore, string inStr, int tarPos, int tarSize, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, double rw1To1Factor, bool debugFlag)
        {
            // return false if no topCand found
            if ((topContextScore == null) || (topContextScore.GetTerm().Equals(inStr)))
            {
                return(false);
            }
            // 1. get the word2Vec score for the org inStr b4 one-to-one
            // 1.1 wordVec for context
            DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
            // 1.2 wordVec for the original words before one-to-one
            ContextScore orgCs = new ContextScore(inStr, contextVec, word2VecOm);

            DebugPrint.Println("--- Real-Word One-To-One Context Score Detail: ---", debugFlag);
            DebugPrint.Println("- Score - orgTerm: " + orgCs.ToString(), debugFlag);
            DebugPrint.Println("- Score - top 1-to-1: " + topContextScore.ToString(), debugFlag);
            DebugPrint.Println("- rw1To1Factor: " + rw1To1Factor, debugFlag);
            // Score rules for one-to-one
            double orgScore = orgCs.GetScore();
            double topScore = topContextScore.GetScore();
            bool   flag     = false;

            // 2.1 no one-to-one correction if orgScore is 0.0d, no word2Vec information
            if (orgScore < 0.0d)
            {
                // 2.2a one-to-one if the org score is negative and top score is positive
                if (topScore > 0.0d)
                {
                    // another rule for word2Vec on real-word
                    if (((topScore - orgScore) > 0.085) && (orgScore > -0.085))                       // help from 0.6812 to 0.6877
                    {
                        flag = true;
                    }
                }
                // 2.2b one-to-one if the org score is negative and top score is better
                else if ((topScore < 0.0d) && (topScore > orgScore * rw1To1Factor))
                {
                    flag = true;
                }
            }
            else if (orgScore > 0.0d)
            {
                // 2.3a merge if the org score is positive and better 0.01*topScore
                if (topScore * rw1To1Factor > orgScore)
                {
                    flag = true;
                }
            }
            return(flag);
        }
Пример #5
0
        // return candidate set with cSpell score
        // wordStr is the srcTxt used to calculate the score between it and cand
        public static HashSet <CSpellScore> GetCandidateScoreSet(string wordStr, HashSet <string> candidates, WordWcMap wordWcMap, int tarPos, int tarSize, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, double wf1, double wf2, double wf3, bool debugFlag)
        {
            HashSet <CSpellScore> candScoreSet = new HashSet <CSpellScore>();

            foreach (string cand in candidates)
            {
                // find context for each candidates
                DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);

                CSpellScore cs = new CSpellScore(wordStr, cand, wordWcMap, contextVec, word2VecOm, wf1, wf2, wf3);
                candScoreSet.Add(cs);
            }
            return(candScoreSet);
        }
Пример #6
0
        // return candidate set with context score
        // word2Vec is the word|wordVec map to get the wordVec
        // Not sorted, because it is a set
        // tarPos: starting position of target token
        // tarSize: token size of target token (single word = 1)
        // contextRadius: windown radius
        public static HashSet <ContextScore> GetCandidateScoreSet(HashSet <string> candidates, int tarPos, int tarSize, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, bool debugFlag)
        {
            // 1. get the context and contextVec, using input matrix
            DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);

            // 2. get context score for all candidates
            HashSet <ContextScore> candScoreSet = new HashSet <ContextScore>();

            foreach (string cand in candidates)
            {
                // get ContextSocre for each candidates, use output matrix
                ContextScore cs = new ContextScore(cand, contextVec, word2VecOm);
                candScoreSet.Add(cs);
            }
            return(candScoreSet);
        }
        // return candidate set with context score
        // word2Vec is the word|wordVec map to get the wordVec
        // Not sorted, because it is a set
        // tarPos: starting position of target token
        // tarSize: token size of target token (single word = 1)
        public static HashSet <ContextScore> GetCandidateScoreSet(HashSet <MergeObj> candidates, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, bool debugFlag)
        {
            HashSet <ContextScore> candScoreSet = new HashSet <ContextScore>();

            // get context score for all candidates
            // go through all merge candidates, all have differetn context
            foreach (MergeObj mergeObj in candidates)
            {
                // 1. get the context and contextVec, using input matrix
                int       tarPos     = mergeObj.GetStartPos();
                int       tarSize    = mergeObj.GetEndPos() - mergeObj.GetStartPos() + 1;
                DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
                // 2. get ContextSocre for each merge, use output matrix
                string       mergeWord = mergeObj.GetCoreMergeWord();
                ContextScore cs        = new ContextScore(mergeWord, contextVec, word2VecOm);
                candScoreSet.Add(cs);
            }
            return(candScoreSet);
        }
Пример #8
0
        // return the best ranked str from candidates using context score
        // this method is replaced by GetTopRankStr, which sorted by comparator
        public static string GetTopRankStrByScore(string inStr, HashSet <string> candidates, int tarPos, int tarSize, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, bool debugFlag)
        {
            // 1. get the context and contextVec
            DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
            string    topRankStr = inStr;
            double    maxScore   = 0.0d;

            foreach (string cand in candidates)
            {
                ContextScore cs    = new ContextScore(cand, contextVec, word2VecOm);
                double       score = cs.GetScore();
                // update only if the score is > 0.0d
                if (score > maxScore)
                {
                    topRankStr = cand;
                    maxScore   = score;
                }
            }
            return(topRankStr);
        }
Пример #9
0
        // return the best ranked str from candidates using word2Vec score
        // inTokenList, includes space token, is not coreTerm.Lc
        // return the orignal inStr if no candidate has score > 0.0d
        public static string GetTopRankStr(string inStr, HashSet <string> candidates, int tarPos, int tarSize, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, int shortSplitWordLength, int maxShortSplitWordNo, double rwSplitFactor, int maxCandNo, bool debugFlag)
        {
            // init
            string topRankStr = inStr;

            // Find the correction str
            if (candidates.Count > 0)
            {
                // 1. sorted score list for each candidates ...
                // This ranking can be improved if n-gram model (frequecny) is used
                List <ContextScore> candScoreList = RankByContext.GetCandidateScoreList(candidates, tarPos, tarSize, nonSpaceTokenList, word2VecIm, word2VecOm, word2VecSkipWord, contextRadius, debugFlag);
                // 1.1 get the top tank candidate
                ContextScore topContextScore = candScoreList[0];
                // 2. validate the top rank
                // 2.1 wordVec for context
                DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
                // 2.2 wordVec for the original words before split
                ContextScore orgContextScore = new ContextScore(inStr, contextVec, word2VecOm);
                // 2.3 compare the top rank split to the original string b4 split
                if (IsTopCandValid(inStr, orgContextScore, topContextScore, rwSplitFactor, debugFlag) == true)
                {
                    // no correction: if score is not good enough for corection
                    topRankStr = topContextScore.GetTerm();
                }
                // debug print
                if (debugFlag == true)
                {
                    // print focus token (original)
                    DebugPrint.PrintCScore(orgContextScore.ToString(), debugFlag);
                    // print candidates
                    ContextScoreComparator <ContextScore> csc = new ContextScoreComparator <ContextScore>();
                    var list = candScoreList.OrderBy(x => x, csc).Take(maxCandNo).Select(obj => obj.ToString()).ToList();
                    foreach (var item in list)
                    {
                        DebugPrint.PrintCScore(item, debugFlag);
                    }
                }
            }
            return(topRankStr);
        }
        // return the best ranked str from candidates using context score
        // this method is replaced by GetTopRankStr, which sorted by comparator
        public static MergeObj GetTopRankMergeObjByScore(HashSet <MergeObj> candidates, List <TokenObj> nonSpaceTokenList, Word2Vec word2VecIm, Word2Vec word2VecOm, bool word2VecSkipWord, int contextRadius, bool debugFlag)
        {
            MergeObj topRankMergeObj = null;
            double   maxScore        = 0.0d;

            foreach (MergeObj mergeObj in candidates)
            {
                // 1. get the context and contextVec
                int       tarPos     = mergeObj.GetStartPos();
                int       tarSize    = mergeObj.GetEndPos() - mergeObj.GetStartPos() + 1;
                DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
                // 2. get ContextSocre for each merge, use output matrix
                string       mergeWord = mergeObj.GetCoreMergeWord();
                ContextScore cs        = new ContextScore(mergeWord, contextVec, word2VecOm);
                double       score     = cs.GetScore();
                // update only if the score is > 0.0d
                if (score > maxScore)
                {
                    topRankMergeObj = mergeObj;
                    maxScore        = score;
                }
            }
            return(topRankMergeObj);
        }
Пример #11
0
        private static void Tests(Word2Vec w2vIm, Word2Vec w2vOm)
        {
            string          inText     = "for the last 10 years    was dianosed\n early on set deminita 3 years ago";
            List <TokenObj> inTextList = TextObj.TextToTokenList(inText);
            // remove space token from the list
            List <TokenObj> nonSpaceTokenList = TextObj.GetNonSpaceTokenObjList(inTextList);
            List <string>   testStrList       = new List <string>();

            testStrList.Add("diagnosed");
            testStrList.Add("diagnose");
            testStrList.Add("dianosed");
            // init context
            int       tarPos           = 6;
            int       tarSize          = 1;
            int       radius           = 2;
            bool      word2VecSkipWord = true;
            bool      debugFlag        = false;
            DoubleVec contextVec       = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, w2vIm, radius, word2VecSkipWord, debugFlag);

            Console.WriteLine("===== Test diagnosed|diagnose|dianosed (window-2) =====");
            Console.WriteLine("inText: [" + inText + "]");
            Console.WriteLine("============================================");
            Console.WriteLine("Candidates|CBOW score|CBOW score 2|Similarity score");
            Console.WriteLine("============================================");
            foreach (string testStr in testStrList)
            {
                Test(testStr, contextVec, w2vIm, w2vOm);
            }
            Console.WriteLine("===== Test diagnosed|diagnose|dianosed (whole text) =====");
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, w2vIm, word2VecSkipWord, debugFlag);
            foreach (string testStr in testStrList)
            {
                Test(testStr, contextVec, w2vIm, w2vOm);
            }
            string          inText1     = "Not all doctors know about this syndrome.";
            List <TokenObj> inTextList1 = TextObj.TextToTokenList(inText1);
            // remove space token from the list
            List <TokenObj> nonSpaceTokenList1 = TextObj.GetNonSpaceTokenObjList(inTextList1);

            Console.WriteLine("===== Test know about|know|about (window) =====");
            List <string> testStrList1 = new List <string>();

            testStrList1.Add("know about");
            testStrList1.Add("know");
            testStrList1.Add("about");
            tarPos     = 3;
            tarSize    = 2;
            radius     = 2;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList1, w2vIm, radius, word2VecSkipWord, debugFlag);
            Test(testStrList1[0], contextVec, w2vIm, w2vOm);
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList1, w2vIm, word2VecSkipWord, debugFlag);
            Test(testStrList1[0], contextVec, w2vIm, w2vOm);
            tarPos     = 3;
            tarSize    = 1;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList1, w2vIm, radius, word2VecSkipWord, debugFlag);
            Test(testStrList1[1], contextVec, w2vIm, w2vOm);
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList1, w2vIm, word2VecSkipWord, debugFlag);
            Test(testStrList1[1], contextVec, w2vIm, w2vOm);
            tarPos     = 4;
            tarSize    = 1;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList1, w2vIm, radius, word2VecSkipWord, debugFlag);
            Test(testStrList1[2], contextVec, w2vIm, w2vOm);
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList1, w2vIm, word2VecSkipWord, debugFlag);
            Test(testStrList1[2], contextVec, w2vIm, w2vOm);

            string          inText2     = "for the last   10 years was diagnosed early on set dementia 3 years ago.";
            List <TokenObj> inTextList2 = TextObj.TextToTokenList(inText2);
            // remove space token from the list
            List <TokenObj> nonSpaceTokenList2 = TextObj.GetNonSpaceTokenObjList(inTextList2);
            List <string>   testStrList2       = new List <string>();

            testStrList2.Add("onset");
            testStrList2.Add("on set");
            Console.WriteLine("===== Test onset|on set (window-3) =====");
            Console.WriteLine("inText: [" + inText + "]");
            tarPos     = 8;
            tarSize    = 2;
            radius     = 3;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList2, w2vIm, radius, word2VecSkipWord, debugFlag);
            foreach (string testStr in testStrList2)
            {
                Test(testStr, contextVec, w2vIm, w2vOm);
            }
            tarPos     = 8;
            tarSize    = 1;
            radius     = 3;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList2, w2vIm, radius, word2VecSkipWord, debugFlag);
            Test("on", contextVec, w2vIm, w2vOm);
            tarPos     = 9;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList2, w2vIm, radius, word2VecSkipWord, debugFlag);
            Test("set", contextVec, w2vIm, w2vOm);
            Console.WriteLine("===== Test onset|on set (whole text) =====");
            radius     = nonSpaceTokenList2.Count;
            contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList2, w2vIm, word2VecSkipWord, debugFlag);
            foreach (string testStr in testStrList2)
            {
                Test(testStr, contextVec, w2vIm, w2vOm);
            }
            Console.WriteLine("===== Go through each tokens with diff radius 1-9) =====");
            Console.WriteLine("tarPos|tarWord|r=1|r=2|r=3|r=4|r=5|r=6|r=7|r=8|r=9");
            //String inText3 = "Broken bones can not sleep at night!";
            string          inText3     = "not xyxy all doctors know about this syndrome.";
            List <TokenObj> inTextList3 = TextObj.TextToTokenList(inText3);
            // remove space token from the list
            List <TokenObj> nonSpaceTokenList3 = TextObj.GetNonSpaceTokenObjList(inTextList3);

            tarPos  = 0;
            tarSize = 1;
            radius  = 0;
            foreach (TokenObj tokenObj in nonSpaceTokenList3)
            {
                // skip the space token
                string tokenStr = tokenObj.GetTokenStr();
                string inStr    = Word2VecContext.NormWordForWord2Vec(tokenStr);
                Console.Write(tarPos + "|" + tokenStr + "|");
                // print out all radius
                for (int r = 1; r < 10; r++)
                {
                    contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, inTextList2, w2vIm, r, word2VecSkipWord, debugFlag);
                    TestWin(inStr, contextVec, w2vIm, w2vOm);
                }
                Console.WriteLine("");
                tarPos++;
            }
        }
        // return the best ranked str from candidates using word2Vec score
        // inTokenList, includes space token, is not coreTerm.Lc
        // return the orignal inStr if no candidate has score > 0.0d
        public static string GetTopRankStr(string inStr, HashSet <string> candidates, CSpellApi cSpellApi, int tarPos, List <TokenObj> nonSpaceTokenList, bool debugFlag)
        {
            // init
            WordWcMap wordWcMap        = cSpellApi.GetWordWcMap();
            Word2Vec  word2VecIm       = cSpellApi.GetWord2VecIm();
            Word2Vec  word2VecOm       = cSpellApi.GetWord2VecOm();
            int       contextRadius    = cSpellApi.GetRw1To1ContextRadius();
            bool      word2VecSkipWord = cSpellApi.GetWord2VecSkipWord();
            int       maxCandNo        = cSpellApi.GetCanMaxCandNo();
            double    wf1        = cSpellApi.GetOrthoScoreEdDistFac();
            double    wf2        = cSpellApi.GetOrthoScorePhoneticFac();
            double    wf3        = cSpellApi.GetOrthoScoreOverlapFac();
            int       tarSize    = 1;    // only for one-to-one, no merge here
            string    topRankStr = inStr;
            // use cSpell top candidates
            int                topNo           = 1; // top sort
            string             inStrLc         = inStr.ToLower();
            List <CSpellScore> cSpellScoreList = RankByCSpellRealWord1To1.GetCandidateScoreList(inStrLc, candidates, wordWcMap, tarPos, tarSize, nonSpaceTokenList, word2VecIm, word2VecOm, word2VecSkipWord, contextRadius, wf1, wf2, wf3, debugFlag);

            // Find the correction str and correct
            if (cSpellScoreList.Count > 0)
            {
                // the rw top rank must be in both NC and orthographic
                CSpellScore  topScore        = cSpellScoreList[0];
                double       topFScore       = topScore.GetFScore().GetScore();         //frequency
                double       topTScore       = topScore.GetOScore().GetTokenScore();    // Token
                double       topPScore       = topScore.GetOScore().GetPhoneticScore(); //Phone
                double       topOScore       = topScore.GetOScore().GetOverlapScore();  //overlap
                ContextScore orgContextScore = null;
                // check the frequency
                // get the max score of frequency, eidt, phonetic, and overlap
                // the top rank must have all top score for above
                if ((topFScore == CSpellScore.GetMaxFScore(cSpellScoreList)) && (topTScore == CSpellScore.GetMaxEScore(cSpellScoreList)) && (topPScore == CSpellScore.GetMaxPScore(cSpellScoreList)) && (topOScore == CSpellScore.GetMaxOScore(cSpellScoreList)))
                {
                    ContextScore topContextScore = topScore.GetCScore();
                    // 1.1 wordVec for context
                    DoubleVec contextVec = Word2VecContext.GetContextVec(tarPos, tarSize, nonSpaceTokenList, word2VecIm, contextRadius, word2VecSkipWord, debugFlag);
                    // 1.2 wordVec for the original words before one-to-one
                    orgContextScore = new ContextScore(inStr, contextVec, word2VecOm);
                    FrequencyScore orgFScore = new FrequencyScore(inStr, wordWcMap);
                    // pass the orgContextScore
                    if (IsTopCandValid(inStr, orgContextScore, topScore, orgFScore, cSpellApi, debugFlag) == true)
                    {
                        // no correction: if score is not good enough for corection
                        topRankStr = topScore.GetCandStr();
                        // debug print for ananlysis
                        /// <summary>
                        ///*
                        /// System.out.println("======= cSpellScoreList.size(): "
                        ///    + cSpellScoreList.size() + " ========");
                        /// System.out.println(inStr
                        ///    + "," + String.format("%1.8f", orgFScore.GetScore())
                        ///    + "," + String.format("%1.8f", orgContextScore.GetScore()));
                        /// System.out.println(CSpellScore.GetScoreHeader());
                        /// for(CSpellScore cSpellScore: cSpellScoreList)
                        /// {
                        ///    System.out.println(cSpellScore.ToString(","));
                        /// }
                        /// **
                        /// </summary>
                    }
                }
                // debug print
                if (debugFlag == true)
                {
                    // print focus token (original)
                    if (orgContextScore != null)
                    {
                        DebugPrint.PrintScore(orgContextScore.ToString(), debugFlag);
                    }
                    else
                    {
                        DebugPrint.PrintScore("No score for focus (" + inStr + ")", debugFlag);
                    }
                    // print candidate
                    var list = cSpellScoreList.Take(maxCandNo).Select(obj => obj.ToString()).ToList();
                    foreach (var item in list)
                    {
                        DebugPrint.PrintScore(item, debugFlag);
                    }
                }
            }
            return(topRankStr);
        }