Пример #1
0
        public static void RunBigInteger()
        {
            BigInteger value = new BigInteger("1234DEADBEEF", 16);

            const string charSet = "ABCDEFGHIJKLMNOP";

            string valueInLetters = value.ToString(charSet);
            Console.WriteLine("Value converted to base 16 using letters:\n{0}\n", valueInLetters);

            BigInteger valueFromLetters = new BigInteger(valueInLetters, charSet);
            Console.WriteLine("Value parsed from base 16 using letters:\n{0}\n", valueFromLetters.ToString(16));
        }
 public void PropertiesShouldBeLoadedCorrectly(string SectionName, string expectedModulus, string expectedExponent)
 {
     BigInteger mod = new BigInteger(expectedModulus, 16);
     BigInteger exp = new BigInteger(expectedExponent, 16);
     RsaSmallPublicKeySection config = (RsaSmallPublicKeySection)ConfigurationManager.GetSection(SectionName);
     Assert.IsNotNull(config, "Config is null.");
     Assert.IsNotNull(config.Value,"Value is null.");
     Assert.IsNotNull(config.Value.Modulus, "Modulus is null.");
     Assert.IsNotNull(config.Value.Exponent, "Exponent is null.");
     Assert.AreEqual(mod, config.Value.Modulus, "Modulus not loaded correctly.");
     Assert.AreEqual(exp, config.Value.Exponent, "Exponent not loaded correctly.");
 }
Пример #3
0
		//***********************************************************************
		// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		//
		// p is probably prime if for any a < p (a is not multiple of p),
		// a^((p-1)/2) mod p = J(a, p)
		//
		// where J is the Jacobi symbol.
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a Euler pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		///
		/// p is probably prime if for any a &lt; p (a is not multiple of p),
		/// a^((p-1)/2) mod p = J(a, p)
		///
		/// where J is the Jacobi symbol.
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a Euler pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool SolovayStrassenTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				BigInteger p_sub1 = thisVal - 1;
				BigInteger p_sub1_shift = p_sub1 >> 1;

				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					// calculate a^((p-1)/2) mod p

					BigInteger expResult = a.ModPow(p_sub1_shift, thisVal);
					if (expResult == p_sub1)
						expResult = -1;

					// calculate Jacobi symbol
					BigInteger jacob = Jacobi(a, thisVal);

					//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
					//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

					// if they are different then it is not prime
					if (expResult != jacob)
						return false;
				}

				return true;
			}
		}
 private Exception privateParse(string code, out BigInteger result)
 {
     result = null;
     if (code == null)
         return new ArgumentNullException("code");
     string cleanCode = code.Trim();
     cleanCode = cleanCode.ToUpperInvariant();
     if (!Regex.IsMatch(cleanCode, validCodeRegex))
         return new FormatException("Invalid code format");
     string tranCode = translator.Translate(cleanCode);
     result = rsa.Decrypt(new BigInteger(tranCode, radix));
     return null;
 }
Пример #5
0
		/// <summary>
		/// Implements the operator *.
		/// </summary>
		/// <param name="operand">The first operand.</param>
		/// <param name="secondOperand">The second operand.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator *(BigInteger operand, BigInteger secondOperand)
		{
			unchecked
			{
				if ((object)operand == null)
					throw new ArgumentNullException("operand");
				if ((object)secondOperand == null)
					throw new ArgumentNullException("secondOperand");
				int lastPos = maxLength - 1;
				bool operandNeg = false, secondOperandNeg = false;

				// take the absolute value of the inputs
				//try
				//{
				if ((operand.data[lastPos] & 0x80000000) != 0) // operand negative
				{
					operandNeg = true;
					operand = -operand;
				}
				if ((secondOperand.data[lastPos] & 0x80000000) != 0) // secondOperand negative
				{
					secondOperandNeg = true;
					secondOperand = -secondOperand;
				}
				//}
				//catch (ApplicationException)
				//{
				//}

				BigInteger result = new BigInteger();

				// multiply the absolute values
				for (int i = 0; i < operand.dataLength; i++)
				{
					if (operand.data[i] == 0)
						continue;

					ulong mcarry = 0;
					for (int j = 0, k = i; j < secondOperand.dataLength; j++, k++)
					{
						// k = i + j
						if (k > maxLength)
						{
							throw new ArithmeticException("Multiplication overflow.");
						}

						ulong val = (operand.data[i] * (ulong)secondOperand.data[j]) + result.data[k] + mcarry;

						result.data[k] = (uint)(val & 0xFFFFFFFF);
						mcarry = (val >> 32);
					}

					if (mcarry != 0)
						result.data[i + secondOperand.dataLength] = (uint)mcarry;
				}

				result.dataLength = operand.dataLength + secondOperand.dataLength;
				if (result.dataLength > maxLength)
					result.dataLength = maxLength;

				while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
					result.dataLength--;

				// overflow check (result is -ve)
				if ((result.data[lastPos] & 0x80000000) != 0)
				{
					if (operandNeg != secondOperandNeg && result.data[lastPos] == 0x80000000) // different sign
					{
						// handle the special case where multiplication produces
						// a max negative number in 2's complement.

						if (result.dataLength == 1)
							return result;
						else
						{
							bool isMaxNeg = true;
							for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
							{
								if (result.data[i] != 0)
									isMaxNeg = false;
							}

							if (isMaxNeg)
								return result;
						}
					}

					throw (new ArithmeticException("Multiplication overflow."));
				}

				// if input has different signs, then result is -ve
				if (operandNeg != secondOperandNeg)
					return -result;

				return result;
			}
		}
Пример #6
0
		/// <summary>
		/// Implements the operator --.
		/// </summary>
		/// <param name="operand">The operand.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator --(BigInteger operand)
		{
			unchecked
			{
				if ((object)operand == null)
					throw new ArgumentNullException("operand");

				BigInteger result = new BigInteger(operand);

				long val;
				bool carryIn = true;
				int index = 0;

				while (carryIn && index < maxLength)
				{
					val = (result.data[index]);
					val--;

					result.data[index] = (uint)(val & 0xFFFFFFFF);

					if (val >= 0)
						carryIn = false;

					index++;
				}

				if (index > result.dataLength)
					result.dataLength = index;

				while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
					result.dataLength--;

				// overflow check
				int lastPos = maxLength - 1;

				// overflow if initial value was -ve but -- caused a sign
				// change to positive.

				if ((operand.data[lastPos] & 0x80000000) != 0 &&
					(result.data[lastPos] & 0x80000000) != (operand.data[lastPos] & 0x80000000))
					throw (new ArithmeticException("Underflow in --."));

				return result;
			}
		}
Пример #7
0
		//***********************************************************************
		// Overloading of subtraction operator
		//***********************************************************************

		/// <summary>
		/// Subtracts the specified operand from this.
		/// </summary>
		/// <param name="operand">The operand.</param>
		/// <returns></returns>
		public BigInteger Subtract(BigInteger operand)
		{
			return this - operand;
		}
Пример #8
0
		/// <summary>
		/// Implements the operator +.
		/// </summary>
		/// <param name="operand">The first operand.</param>
		/// <param name="secondOperand">The second operand.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator +(BigInteger operand, BigInteger secondOperand)
		{
			unchecked
			{
				if ((object)operand == null)
					return null;
				if ((object)secondOperand == null)
					return null;
				BigInteger result = new BigInteger();

				result.dataLength = (operand.dataLength > secondOperand.dataLength) ? operand.dataLength : secondOperand.dataLength;

				long carry = 0;
				for (int i = 0; i < result.dataLength; i++)
				{
					long sum = operand.data[i] + (long)secondOperand.data[i] + carry;
					carry = sum >> 32;
					result.data[i] = (uint)(sum & 0xFFFFFFFF);
				}

				if (carry != 0 && result.dataLength < maxLength)
				{
					result.data[result.dataLength] = (uint)(carry);
					result.dataLength++;
				}

				while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
					result.dataLength--;

				// overflow check
				int lastPos = maxLength - 1;
				if ((operand.data[lastPos] & 0x80000000) == (secondOperand.data[lastPos] & 0x80000000) &&
					(result.data[lastPos] & 0x80000000) != (operand.data[lastPos] & 0x80000000))
					throw (new ArithmeticException());

				return result;
			}
		}
Пример #9
0
		//***********************************************************************
		// Returns a value that is equivalent to the integer square root
		// of the BigInteger.
		//
		// The integer square root of "this" is defined as the largest integer n
		// such that (n * n) <= this
		//
		//***********************************************************************

		/// <summary>
		/// Returns a value that is equivalent to the integer square root
		/// of the BigInteger.
		/// </summary>
		/// <returns></returns>
		public BigInteger Sqrt()
		{
			unchecked
			{
				uint numBits = (uint)BitCount();

				if ((numBits & 0x1) != 0) // odd number of bits
					numBits = (numBits >> 1) + 1;
				else
					numBits = (numBits >> 1);

				uint bytePos = numBits >> 5;
				byte bitPos = (byte)(numBits & 0x1F);

				uint mask;

				BigInteger result = new BigInteger();
				if (bitPos == 0)
					mask = 0x80000000;
				else
				{
					mask = (uint)1 << bitPos;
					bytePos++;
				}
				result.dataLength = (int)bytePos;

				for (int i = (int)bytePos - 1; i >= 0; i--)
				{
					while (mask != 0)
					{
						// guess
						result.data[i] ^= mask;

						// undo the guess if its square is larger than this
						if ((result * result) > this)
							result.data[i] ^= mask;

						mask >>= 1;
					}
					mask = 0x80000000;
				}
				return result;
			}
		}
Пример #10
0
		//***********************************************************************
		// Returns the modulo inverse of this.  Throws ArithmeticException if
		// the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
		//***********************************************************************

		/// <summary>
		/// Returns the modulo inverse of this.  Throws ArithmeticException if
		/// the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
		/// </summary>
		/// <param name="modulus">The modulus.</param>
		/// <returns></returns>
		public BigInteger ModInverse(BigInteger modulus)
		{
			unchecked
			{
				BigInteger[] p = {0, 1};
				BigInteger[] q = new BigInteger[2]; // quotients
				BigInteger[] r = {0, 0}; // remainders

				int step = 0;

				BigInteger a = modulus;
				BigInteger b = this;

				while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
				{
					BigInteger quotient = new BigInteger();
					BigInteger remainder = new BigInteger();

					if (step > 1)
					{
						BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
						p[0] = p[1];
						p[1] = pval;
					}

					if (b.dataLength == 1)
						singleByteDivide(a, b, quotient, remainder);
					else
						multiByteDivide(a, b, quotient, remainder);

					/*
								Console.WriteLine(quotient.dataLength);
								Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
												b.ToString(10), quotient.ToString(10), remainder.ToString(10),
												p[1].ToString(10));
								*/

					q[0] = q[1];
					r[0] = r[1];
					q[1] = quotient;
					r[1] = remainder;

					a = b;
					b = remainder;

					step++;
				}

				if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
					throw (new ArithmeticException("No inverse!"));

				BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);

				if ((result.data[maxLength - 1] & 0x80000000) != 0)
					result += modulus; // get the least positive modulus

				return result;
			}
		}
Пример #11
0
		//***********************************************************************
		// Generates a random number with the specified number of bits such
		// that gcd(number, this) = 1
		//***********************************************************************

		/// <summary>
		/// Generates a random number with the specified number of bits such
		/// that gcd(number, this) = 1
		/// </summary>
		/// <param name="bits">The bits.</param>
		/// <param name="rand">The rand.</param>
		/// <returns></returns>
		public BigInteger GenerateCoprime(int bits, Random rand)
		{
			unchecked
			{
				bool done = false;
				BigInteger result = new BigInteger();

				while (!done)
				{
					result.GenerateRandomBits(bits, rand);
					//Console.WriteLine(result.ToString(16));

					// gcd test
					BigInteger g = result.Gcd(this);
					if (g.dataLength == 1 && g.data[0] == 1)
						done = true;
				}

				return result;
			}
		}
Пример #12
0
		//***********************************************************************
		// Generates a positive BigInteger that is probably prime.
		//***********************************************************************

		/// <summary>
		/// Generates a positive BigInteger that is probably prime.
		/// </summary>
		/// <param name="bits">The bits.</param>
		/// <param name="confidence">The confidence.</param>
		/// <param name="rand">The random number generator.</param>
		/// <returns></returns>
		public static BigInteger GeneratePseudoPrime(int bits, int confidence, Random rand)
		{
			unchecked
			{
				BigInteger result = new BigInteger();
				bool done = false;

				while (!done)
				{
					result.GenerateRandomBits(bits, rand);
					result.data[0] |= 0x01; // make it odd

					// prime test
					done = result.IsProbablePrime(confidence);
				}
				return result;
			}
		}
Пример #13
0
		//***********************************************************************
		// Computes the Jacobi Symbol for a and b.
		// Algorithm adapted from [3] and [4] with some optimizations
		//***********************************************************************

		/// <summary>
		/// Computes the Jacobi Symbol for a and b.
		/// </summary>
		/// <param name="a">a.</param>
		/// <param name="b">b.</param>
		/// <returns></returns>
		public static int Jacobi(BigInteger a, BigInteger b)
		{
			unchecked
			{
				if ((object)a == null)
					throw new ArgumentNullException("a");
				if ((object)b == null)
					throw new ArgumentNullException("b");
				// Jacobi defined only for odd integers
				if ((b.data[0] & 0x1) == 0)
					throw (new ArgumentException("Jacobi defined only for odd integers."));

				if (a >= b)
					a %= b;
				if (a.dataLength == 1 && a.data[0] == 0)
					return 0; // a == 0
				if (a.dataLength == 1 && a.data[0] == 1)
					return 1; // a == 1

				if (a < 0)
				{
					if ((((b - 1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0)
						return Jacobi(-a, b);
					else
						return -Jacobi(-a, b);
				}

				int e = 0;
				for (int index = 0; index < a.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((a.data[index] & mask) != 0)
						{
							index = a.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						e++;
					}
				}

				BigInteger a1 = a >> e;

				int s = 1;
				if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
					s = -1;

				if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
					s = -s;

				if (a1.dataLength == 1 && a1.data[0] == 1)
					return s;
				else
					return (s * Jacobi(b % a1, a1));
			}
		}
Пример #14
0
		//***********************************************************************
		// Constructor (Default value provided by BigInteger)
		//***********************************************************************

		/// <summary>
		/// Initializes a new instance of the <see cref="BigInteger"/> class.
		/// </summary>
		/// <param name="bi">The bi.</param>
		public BigInteger(BigInteger bi)
		{
			unchecked
			{
				if ((object)bi == null)
					throw new ArgumentNullException("bi");

				data = new uint[maxLength];

				dataLength = bi.dataLength;

				for (int i = 0; i < dataLength; i++)
					data[i] = bi.data[i];
			}
		}
Пример #15
0
		private static bool LucasStrongTestHelper(BigInteger thisVal)
		{
			unchecked
			{
				// Do the test (selects D based on Selfridge)
				// Let D be the first element of the sequence
				// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
				// Let P = 1, Q = (1-D) / 4

				long D = 5, sign = -1, dCount = 0;
				bool done = false;

				while (!done)
				{
					int Jresult = Jacobi(D, thisVal);

					if (Jresult == -1)
						done = true; // J(D, this) = 1
					else
					{
						if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found
							return false;

						if (dCount == 20)
						{
							// check for square
							BigInteger root = thisVal.Sqrt();
							if (root * root == thisVal)
								return false;
						}

						//Console.WriteLine(D);
						D = (Math.Abs(D) + 2) * sign;
						sign = -sign;
					}
					dCount++;
				}

				long Q = (1 - D) >> 2;

				/*
						Console.WriteLine("D = " + D);
						Console.WriteLine("Q = " + Q);
						Console.WriteLine("(n,D) = " + thisVal.gcd(D));
						Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
						Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
						*/

				BigInteger p_add1 = thisVal + 1;
				int s = 0;

				for (int index = 0; index < p_add1.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((p_add1.data[index] & mask) != 0)
						{
							index = p_add1.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = p_add1 >> s;

				// calculate constant = b^(2k) / m
				// for Barrett Reduction
				BigInteger constant = new BigInteger();

				int nLen = thisVal.dataLength << 1;
				constant.data[nLen] = 0x00000001;
				constant.dataLength = nLen + 1;

				constant = constant / thisVal;

				BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
				bool isPrime = false;

				if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
					(lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
				{
					// u(t) = 0 or V(t) = 0
					isPrime = true;
				}

				for (int i = 1; i < s; i++)
				{
					if (!isPrime)
					{
						// doubling of index
						lucas[1] = BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
						lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

						//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

						if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
							isPrime = true;
					}

					lucas[2] = BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
				}

				if (isPrime) // additional checks for composite numbers
				{
					// If n is prime and gcd(n, Q) == 1, then
					// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

					BigInteger g = thisVal.Gcd(Q);
					if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1
					{
						if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
							lucas[2] += thisVal;

						BigInteger temp = (Q * Jacobi(Q, thisVal)) % thisVal;
						if ((temp.data[maxLength - 1] & 0x80000000) != 0)
							temp += thisVal;

						if (lucas[2] != temp)
							isPrime = false;
					}
				}

				return isPrime;
			}
		}
Пример #16
0
		internal static void Main(string[] args)
		{
			// Known problem -> these two pseudoprimes passes my implementation of
			// primality test but failed in JDK's isProbablePrime test.

			byte[] pseudoPrime1 = {
			                        0x00,
			                        0x85, 0x84, 0x64, 0xFD, 0x70, 0x6A,
			                        0x9F, 0xF0, 0x94, 0x0C, 0x3E, 0x2C,
			                        0x74, 0x34, 0x05, 0xC9, 0x55, 0xB3,
			                        0x85, 0x32, 0x98, 0x71, 0xF9, 0x41,
			                        0x21, 0x5F, 0x02, 0x9E, 0xEA, 0x56,
			                        0x8D, 0x8C, 0x44, 0xCC, 0xEE, 0xEE,
			                        0x3D, 0x2C, 0x9D, 0x2C, 0x12, 0x41,
			                        0x1E, 0xF1, 0xC5, 0x32, 0xC3, 0xAA,
			                        0x31, 0x4A, 0x52, 0xD8, 0xE8, 0xAF,
			                        0x42, 0xF4, 0x72, 0xA1, 0x2A, 0x0D,
			                        0x97, 0xB1, 0x31, 0xB3,
			                      };

			//byte[] pseudoPrime2 = {
			//                        0x00,
			//                        0x99, 0x98, 0xCA, 0xB8, 0x5E, 0xD7,
			//                        0xE5, 0xDC, 0x28, 0x5C, 0x6F, 0x0E,
			//                        0x15, 0x09, 0x59, 0x6E, 0x84, 0xF3,
			//                        0x81, 0xCD, 0xDE, 0x42, 0xDC, 0x93,
			//                        0xC2, 0x7A, 0x62, 0xAC, 0x6C, 0xAF,
			//                        0xDE, 0x74, 0xE3, 0xCB, 0x60, 0x20,
			//                        0x38, 0x9C, 0x21, 0xC3, 0xDC, 0xC8,
			//                        0xA2, 0x4D, 0xC6, 0x2A, 0x35, 0x7F,
			//                        0xF3, 0xA9, 0xE8, 0x1D, 0x7B, 0x2C,
			//                        0x78, 0xFA, 0xB8, 0x02, 0x55, 0x80,
			//                        0x9B, 0xC2, 0xA5, 0xCB,
			//                      };

			Console.WriteLine("List of primes < 2000\n---------------------");
			int limit = 100, count = 0;
			for (int i = 0; i < 2000; i++)
			{
				if (i >= limit)
				{
					Console.WriteLine();
					limit += 100;
				}

				BigInteger p = new BigInteger(-i);

				if (p.IsProbablePrime())
				{
					Console.Write(i + ", ");
					count++;
				}
			}
			Console.WriteLine("\nCount = " + count);

			BigInteger operand = new BigInteger(pseudoPrime1);
			Console.WriteLine("\n\nPrimality testing for\n" + operand + "\n");
			Console.WriteLine("SolovayStrassenTest(5) = " + operand.SolovayStrassenTest(5));
			Console.WriteLine("RabinMillerTest(5) = " + operand.RabinMillerTest(5));
			Console.WriteLine("FermatLittleTest(5) = " + operand.FermatLittleTest(5));
			Console.WriteLine("isProbablePrime() = " + operand.IsProbablePrime());

			Console.Write("\nGenerating 512-bits random pseudoprime. . .");
			Random rand = new Random();
			BigInteger prime = GeneratePseudoPrime(512, 5, rand);
			Console.WriteLine("\n" + prime);

			//int dwStart = System.Environment.TickCount;
			//BigInteger.MulDivTest(100000);
			//BigInteger.RSATest(10);
			//BigInteger.RSATest2(10);
			//Console.WriteLine(System.Environment.TickCount - dwStart);
		}
Пример #17
0
		//***********************************************************************
		// Overloading of addition operator
		//***********************************************************************

		/// <summary>
		/// Adds the specified operands.
		/// </summary>
		/// <param name="operand">The operand.</param>
		/// <returns></returns>
		public BigInteger Add(BigInteger operand)
		{
			return this + operand;
		}
Пример #18
0
		//***********************************************************************
		// Constructor (Default value provided by a string of digits of the
		//              specified base)
		//
		// Example (base 10)
		// -----------------
		// To initialize "a" with the default value of 1234 in base 10
		//      BigInteger a = new BigInteger("1234", 10)
		//
		// To initialize "a" with the default value of -1234
		//      BigInteger a = new BigInteger("-1234", 10)
		//
		// Example (base 16)
		// -----------------
		// To initialize "a" with the default value of 0x1D4F in base 16
		//      BigInteger a = new BigInteger("1D4F", 16)
		//
		// To initialize "a" with the default value of -0x1D4F
		//      BigInteger a = new BigInteger("-1D4F", 16)
		//
		// Note that string values are specified in the <sign><magnitude>
		// format.
		//
		//***********************************************************************

		/// <summary>
		/// Initializes a new instance of the <see cref="BigInteger"/> class.
		/// </summary>
		/// <param name="value">The value.</param>
		/// <param name="charSet">The character set used to represent the value.</param>
		public BigInteger(string value, string charSet)
		{
			int radix = charSet.Length;
			unchecked
			{
				if (value == null)
					throw new ArgumentNullException("value");
				BigInteger multiplier = new BigInteger(1);
				BigInteger result = new BigInteger();

				value = (value.ToUpperInvariant()).Trim();
				int limit = 0;

				if (value[0] == '-')
					limit = 1;

				for (int i = value.Length - 1; i >= limit; i--)
				{
					int posVal = charSet.IndexOf(value[i]);

                    if (posVal < 0)
						throw (new ArithmeticException("Invalid string in constructor."));
					else
					{
						if (value[0] == '-')
							posVal = -posVal;

						result = result + (multiplier * posVal);

						if ((i - 1) >= limit)
							multiplier = multiplier * radix;
					}
				}

				if (value[0] == '-') // negative values
				{
					if ((result.data[maxLength - 1] & 0x80000000) == 0)
						throw (new ArithmeticException("Negative underflow in constructor."));
				}
				else // positive values
				{
					if ((result.data[maxLength - 1] & 0x80000000) != 0)
						throw (new ArithmeticException("Positive overflow in constructor."));
				}

				data = new uint[maxLength];
				for (int i = 0; i < result.dataLength; i++)
					data[i] = result.data[i];

				dataLength = result.dataLength;
			}
		}
Пример #19
0
		/// <summary>
		/// Implements the operator ++.
		/// </summary>
		/// <param name="operand">The operand.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator ++(BigInteger operand)
		{
			unchecked
			{
				if ((object)operand == null)
					throw new ArgumentNullException("operand");
				BigInteger result = new BigInteger(operand);

				long val, carry = 1;
				int index = 0;

				while (carry != 0 && index < maxLength)
				{
					val = (long)(result.data[index]);
					val++;

					result.data[index] = (uint)(val & 0xFFFFFFFF);
					carry = val >> 32;

					index++;
				}

				if (index > result.dataLength)
					result.dataLength = index;
				else
				{
					while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
						result.dataLength--;
				}

				// overflow check
				int lastPos = maxLength - 1;

				// overflow if initial value was +ve but ++ caused a sign
				// change to negative.

				if ((operand.data[lastPos] & 0x80000000) == 0 &&
					(result.data[lastPos] & 0x80000000) != (operand.data[lastPos] & 0x80000000))
					throw (new ArithmeticException("Overflow in ++."));
				return result;
			}
		}
Пример #20
0
		//***********************************************************************
		// Returns the k_th number in the Lucas Sequence reduced modulo n.
		//
		// Uses index doubling to speed up the process.  For example, to calculate V(k),
		// we maintain two numbers in the sequence V(n) and V(n+1).
		//
		// To obtain V(2n), we use the identity
		//      V(2n) = (V(n) * V(n)) - (2 * Q^n)
		// To obtain V(2n+1), we first write it as
		//      V(2n+1) = V((n+1) + n)
		// and use the identity
		//      V(m+n) = V(m) * V(n) - Q * V(m-n)
		// Hence,
		//      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
		//                   = V(n+1) * V(n) - Q^n * V(1)
		//                   = V(n+1) * V(n) - Q^n * P
		//
		// We use k in its binary expansion and perform index doubling for each
		// bit position.  For each bit position that is set, we perform an
		// index doubling followed by an index addition.  This means that for V(n),
		// we need to update it to V(2n+1).  For V(n+1), we need to update it to
		// V((2n+1)+1) = V(2*(n+1))
		//
		// This function returns
		// [0] = U(k)
		// [1] = V(k)
		// [2] = Q^n
		//
		// Where U(0) = 0 % n, U(1) = 1 % n
		//       V(0) = 2 % n, V(1) = P % n
		//***********************************************************************

		/// <summary>
		/// Returns the k_th number in the Lucas Sequence reduced modulo n.
		/// </summary>
		/// <param name="P">P.</param>
		/// <param name="Q">Q.</param>
		/// <param name="k">k.</param>
		/// <param name="n">n.</param>
		/// <returns></returns>
		public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
												 BigInteger k, BigInteger n)
		{
			unchecked
			{
				if ((object)P == null)
					throw new ArgumentNullException("P");
				if ((object)Q == null)
					throw new ArgumentNullException("Q");
				if ((object)k == null)
					throw new ArgumentNullException("k");
				if ((object)n == null)
					throw new ArgumentNullException("n");
				if (k.dataLength == 1 && k.data[0] == 0)
				{
					BigInteger[] result = new BigInteger[3];

					result[0] = 0;
					result[1] = 2 % n;
					result[2] = 1 % n;
					return result;
				}

				// calculate constant = b^(2k) / m
				// for Barrett Reduction
				BigInteger constant = new BigInteger();

				int nLen = n.dataLength << 1;
				constant.data[nLen] = 0x00000001;
				constant.dataLength = nLen + 1;

				constant = constant / n;

				// calculate values of s and t
				int s = 0;

				for (int index = 0; index < k.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((k.data[index] & mask) != 0)
						{
							index = k.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = k >> s;

				//Console.WriteLine("s = " + s + " t = " + t);
				return LucasSequenceHelper(P, Q, t, n, constant, s);
			}
		}
Пример #21
0
		/// <summary>
		/// Implements the operator -.
		/// </summary>
		/// <param name="operand">The first operand.</param>
		/// <param name="secondOperand">The second operand.</param>
		/// <returns>The result of the operator.</returns>
		public static BigInteger operator -(BigInteger operand, BigInteger secondOperand)
		{
			unchecked
			{
				if ((object)operand == null)
					throw new ArgumentNullException("operand");
				if ((object)secondOperand == null)
					throw new ArgumentNullException("secondOperand");
				BigInteger result = new BigInteger();

				result.dataLength = (operand.dataLength > secondOperand.dataLength) ? operand.dataLength : secondOperand.dataLength;

				long carryIn = 0;
				for (int i = 0; i < result.dataLength; i++)
				{
					long diff;

					diff = operand.data[i] - (long)secondOperand.data[i] - carryIn;
					result.data[i] = (uint)(diff & 0xFFFFFFFF);

					if (diff < 0)
						carryIn = 1;
					else
						carryIn = 0;
				}

				// roll over to negative
				if (carryIn != 0)
				{
					for (int i = result.dataLength; i < maxLength; i++)
						result.data[i] = 0xFFFFFFFF;
					result.dataLength = maxLength;
				}

				// fixed in v1.03 to give correct datalength for a - (-b)
				while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
					result.dataLength--;

				// overflow check

				int lastPos = maxLength - 1;
				if ((operand.data[lastPos] & 0x80000000) != (secondOperand.data[lastPos] & 0x80000000) &&
					(result.data[lastPos] & 0x80000000) != (operand.data[lastPos] & 0x80000000))
					throw (new ArithmeticException());

				return result;
			}
		}
Пример #22
0
		//***********************************************************************
		// Performs the calculation of the kth term in the Lucas Sequence.
		// For details of the algorithm, see reference [9].
		//
		// k must be odd.  i.e LSB == 1
		//***********************************************************************

		private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
														BigInteger k, BigInteger n,
														BigInteger constant, int s)
		{
			unchecked
			{
				BigInteger[] result = new BigInteger[3];

				if ((k.data[0] & 0x00000001) == 0)
					throw (new ArgumentException("Argument k must be odd."));

				int numbits = k.BitCount();
				uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

				// v = v0, v1 = v1, u1 = u1, Q_k = Q^0

				BigInteger v = 2 % n,
					Q_k = 1 % n,
					v1 = P % n,
					u1 = Q_k;
				bool flag = true;

				for (int i = k.dataLength - 1; i >= 0; i--) // iterate on the binary expansion of k
				{
					//Console.WriteLine("round");
					while (mask != 0)
					{
						if (i == 0 && mask == 0x00000001) // last bit
							break;

						if ((k.data[i] & mask) != 0) // bit is set
						{
							// index doubling with addition

							u1 = (u1 * v1) % n;

							v = ((v * v1) - (P * Q_k)) % n;
							v1 = BarrettReduction(v1 * v1, n, constant);
							v1 = (v1 - ((Q_k * Q) << 1)) % n;

							if (flag)
								flag = false;
							else
								Q_k = BarrettReduction(Q_k * Q_k, n, constant);

							Q_k = (Q_k * Q) % n;
						}
						else
						{
							// index doubling
							u1 = ((u1 * v) - Q_k) % n;

							v1 = ((v * v1) - (P * Q_k)) % n;
							v = BarrettReduction(v * v, n, constant);
							v = (v - (Q_k << 1)) % n;

							if (flag)
							{
								Q_k = Q % n;
								flag = false;
							}
							else
								Q_k = BarrettReduction(Q_k * Q_k, n, constant);
						}

						mask >>= 1;
					}
					mask = 0x80000000;
				}

				// at this point u1 = u(n+1) and v = v(n)
				// since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

				u1 = ((u1 * v) - Q_k) % n;
				v = ((v * v1) - (P * Q_k)) % n;
				if (flag)
					flag = false;
				else
					Q_k = BarrettReduction(Q_k * Q_k, n, constant);

				Q_k = (Q_k * Q) % n;

				for (int i = 0; i < s; i++)
				{
					// index doubling
					u1 = (u1 * v) % n;
					v = ((v * v) - (Q_k << 1)) % n;

					if (flag)
					{
						Q_k = Q % n;
						flag = false;
					}
					else
						Q_k = BarrettReduction(Q_k * Q_k, n, constant);
				}

				result[0] = u1;
				result[1] = v;
				result[2] = Q_k;

				return result;
			}
		}
Пример #23
0
		//***********************************************************************
		// Overloading of multiplication operator
		//***********************************************************************

		/// <summary>
		/// Multiplies this instance with the specified operand.
		/// </summary>
		/// <param name="operand">The operand.</param>
		/// <returns>The result of the operator.</returns>
		public BigInteger Multiply(BigInteger operand)
		{
			return this*operand;
		}
Пример #24
0
	//***********************************************************************
	// Tests the correct implementation of the /, %, * and + operators
	//***********************************************************************

		internal static void MulDivTest(int rounds)
		{
			Random rand = new Random();
			byte[] val = new byte[64];
			byte[] val2 = new byte[64];

			for (int count = 0; count < rounds; count++)
			{
				// generate 2 numbers of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				int t2 = 0;
				while (t2 == 0)
					t2 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t2)
							val2[i] = (byte)(rand.NextDouble() * 256);
						else
							val2[i] = 0;

						if (val2[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);
				while (val2[0] == 0)
					val2[0] = (byte)(rand.NextDouble() * 256);

				Console.WriteLine(count);
				BigInteger bn1 = new BigInteger(val, t1);
				BigInteger bn2 = new BigInteger(val2, t2);

				// Determine the quotient and remainder by dividing
				// the first number by the second.

				BigInteger bn3 = bn1 / bn2;
				BigInteger bn4 = bn1 % bn2;

				// Recalculate the number
				BigInteger bn5 = (bn3 * bn2) + bn4;

				// Make sure they're the same
				if (bn5 != bn1)
				{
					Console.WriteLine("Error at " + count);
					Console.WriteLine(bn1 + "\n");
					Console.WriteLine(bn2 + "\n");
					Console.WriteLine(bn3 + "\n");
					Console.WriteLine(bn4 + "\n");
					Console.WriteLine(bn5 + "\n");
					return;
				}
			}
		}
Пример #25
0
		//***********************************************************************
		// Tests the correct implementation of the modulo exponential function
		// using RSA encryption and decryption (using pre-computed encryption and
		// decryption keys).
		//***********************************************************************

		internal static void RSATest(int rounds)
		{
			Random rand = new Random(1);
			byte[] val = new byte[64];

			// private and public key
			BigInteger bi_e =
				new BigInteger(
					"a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7",
					16);
			BigInteger bi_d =
				new BigInteger(
					"4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7",
					16);
			BigInteger bi_n =
				new BigInteger(
					"e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f",
					16);

			Console.WriteLine("e =\n" + bi_e.ToString(10));
			Console.WriteLine("\nd =\n" + bi_d.ToString(10));
			Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.ModPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.ModPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
Пример #26
0
		//***********************************************************************
		// Tests the correct implementation of the modulo exponential and
		// inverse modulo functions using RSA encryption and decryption.  The two
		// pseudoprimes p and q are fixed, but the two RSA keys are generated
		// for each round of testing.
		//***********************************************************************

		internal static void RSATest2(int rounds)
		{
			Random rand = new Random();
			byte[] val = new byte[64];

			byte[] pseudoPrime1 = {
			                      	0x85, 0x84, 0x64, 0xFD, 0x70, 0x6A,
			                      	0x9F, 0xF0, 0x94, 0x0C, 0x3E, 0x2C,
			                      	0x74, 0x34, 0x05, 0xC9, 0x55, 0xB3,
			                      	0x85, 0x32, 0x98, 0x71, 0xF9, 0x41,
			                      	0x21, 0x5F, 0x02, 0x9E, 0xEA, 0x56,
			                      	0x8D, 0x8C, 0x44, 0xCC, 0xEE, 0xEE,
			                      	0x3D, 0x2C, 0x9D, 0x2C, 0x12, 0x41,
			                      	0x1E, 0xF1, 0xC5, 0x32, 0xC3, 0xAA,
			                      	0x31, 0x4A, 0x52, 0xD8, 0xE8, 0xAF,
			                      	0x42, 0xF4, 0x72, 0xA1, 0x2A, 0x0D,
			                      	0x97, 0xB1, 0x31, 0xB3,
			                      };

			byte[] pseudoPrime2 = {
			                      	0x99, 0x98, 0xCA, 0xB8, 0x5E, 0xD7,
			                      	0xE5, 0xDC, 0x28, 0x5C, 0x6F, 0x0E,
			                      	0x15, 0x09, 0x59, 0x6E, 0x84, 0xF3,
			                      	0x81, 0xCD, 0xDE, 0x42, 0xDC, 0x93,
			                      	0xC2, 0x7A, 0x62, 0xAC, 0x6C, 0xAF,
			                      	0xDE, 0x74, 0xE3, 0xCB, 0x60, 0x20,
			                      	0x38, 0x9C, 0x21, 0xC3, 0xDC, 0xC8,
			                      	0xA2, 0x4D, 0xC6, 0x2A, 0x35, 0x7F,
			                      	0xF3, 0xA9, 0xE8, 0x1D, 0x7B, 0x2C,
			                      	0x78, 0xFA, 0xB8, 0x02, 0x55, 0x80,
			                      	0x9B, 0xC2, 0xA5, 0xCB,
			                      };

			BigInteger bi_p = new BigInteger(pseudoPrime1);
			BigInteger bi_q = new BigInteger(pseudoPrime2);
			BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
			BigInteger bi_n = bi_p * bi_q;

			for (int count = 0; count < rounds; count++)
			{
				// generate private and public key
				BigInteger bi_e = bi_pq.GenerateCoprime(512, rand);
				BigInteger bi_d = bi_e.ModInverse(bi_pq);

				Console.WriteLine("\ne =\n" + bi_e.ToString(10));
				Console.WriteLine("\nd =\n" + bi_d.ToString(10));
				Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.ModPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.ModPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
 /// <summary>
 /// Tries to parse the code and returns true if successful. The parsed value is passed in result.
 /// </summary>
 /// <param name="code">The code.</param>
 /// <param name="result">The result.</param>
 /// <returns></returns>
 public bool TryParse(string code, out BigInteger result)
 {
     Exception e = privateParse(code, out result);
     return e == null;
 }
Пример #28
0
		//***********************************************************************
		// Tests the correct implementation of sqrt() method.
		//***********************************************************************

		internal static void SqrtTest(int rounds)
		{
			Random rand = new Random();
			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 1024);

				Console.Write("Round = " + count);

				BigInteger a = new BigInteger();
				a.GenerateRandomBits(t1, rand);

				BigInteger b = a.Sqrt();
				BigInteger c = (b + 1) * (b + 1);

				// check that b is the largest integer such that b*b <= a
				if (c <= a)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(a + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
 /// <summary>
 /// Initializes a new instance of the <see cref="RsaSmallFullKey"/> class.
 /// </summary>
 /// <param name="modulus">The modulus.</param>
 /// <param name="privateExponent">The private exponent.</param>
 /// <param name="publicExponent">The public exponent.</param>
 public RsaSmallFullKey(BigInteger modulus, BigInteger privateExponent, BigInteger publicExponent)
 {
     privateKey = new RsaSmallPrivateKey(modulus, privateExponent);
     publicKey = new RsaSmallPublicKey(modulus, publicExponent);
 }
Пример #30
0
		//***********************************************************************
		// Probabilistic prime test based on Rabin-Miller's
		//
		// for any p > 0 with p - 1 = 2^s * t
		//
		// p is probably prime (strong pseudoprime) if for any a < p,
		// 1) a^t mod p = 1 or
		// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a strong pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Rabin-Miller's
		///
		/// for any p &gt; 0 with p - 1 = 2^s * t
		///
		/// p is probably prime (strong pseudoprime) if for any a &lt; p,
		/// 1) a^t mod p = 1 or
		/// 2) a^((2^j)*t) mod p = p-1 for some 0 &lt;= j &lt;= s-1
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a strong pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool RabinMillerTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				// calculate values of s and t
				BigInteger p_sub1 = thisVal - (new BigInteger(1));
				int s = 0;

				for (int index = 0; index < p_sub1.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((p_sub1.data[index] & mask) != 0)
						{
							index = p_sub1.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = p_sub1 >> s;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					BigInteger b = a.ModPow(t, thisVal);

					/*
								Console.WriteLine("a = " + a.ToString(10));
								Console.WriteLine("b = " + b.ToString(10));
								Console.WriteLine("t = " + t.ToString(10));
								Console.WriteLine("s = " + s);
								*/

					bool result = false;

					if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
						result = true;

					for (int j = 0; result == false && j < s; j++)
					{
						if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
						{
							result = true;
							break;
						}

						b = (b * b) % thisVal;
					}

					if (result == false)
						return false;
				}
				return true;
			}
		}