public static void InverseDeterminant(DualMatrix matrix, out DualMatrix inverse, out DualNumber determinant)
        {
            int n = matrix.Rows;
            if (matrix.Columns != n)
            {
                throw new ArgumentException("The matrix is not a square matrix.");
            }

            DualNumber[,] a = matrix.ToArray();

            if (!spdmatrixcholesky(ref a, n, false))
            {
                throw new ArithmeticException();
            }

            determinant = spdmatrixcholeskydet(ref a, n);

            int info = 0;
            spdmatrixcholeskyinverse(ref a, n, false, ref info);

            for (int i = 0; i < n; i++)
            {
                for (int j = i + 1; j < n; j++)
                {
                    a[i, j] = a[j, i];
                }
            }

            inverse = new DualMatrix(a);
        }
        /// <summary>
        /// This method saves some time if both the inverse and the determinant is needed by only having to compute
        /// the inverse once.
        /// </summary>
        public static void InverseDeterminant(DualMatrix matrix, out DualMatrix inverse, out DualNumber determinant)
        {
            int m = matrix.Rows;

            if (matrix.Columns != m)
            {
                throw new ArgumentException("The matrix isn't a square matrix.");
            }

            if (m <= 3)
            {
                // The naive implementation seems to be faster (for all values of n). Maybe it's
                // faster to perform the LU decomposition directly on the DualNumbers?
                determinant = DeterminantDirect(m, matrix);
                inverse = InverseDirect(m, matrix, determinant);
                return;
            }

            int n = GradientLength(m, matrix);

            LUDecomposition lu = LUDecomposition.Decompose(matrix.GetValues());
            Matrix inverse0 = lu.Inverse();
            double determinant0 = lu.Determinant();

            inverse = Inverse(matrix, m, n, inverse0);
            determinant = Determinant(matrix, m, n, inverse0, determinant0);
        }
Пример #3
0
        public DualVector(DualNumber[] entries)
        {
            int n = entries.Length;

            DualNumber[,] a = new DualNumber[n, 1];
            for (int i = 0; i < n; i++)
            {
                a[i, 0] = entries[i];
            }

            inner = new DualMatrix(a);
        }
Пример #4
0
        public DualMatrix(int rows, int columns, DualNumber value)
        {
            if (rows < 0 || columns < 0)
            {
                throw new ArgumentOutOfRangeException();
            }

            entries = new DualNumber[rows, columns];
            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < columns; j++)
                {
                    entries[i, j] = value;
                }
            }
        }
        private static void rmatrixmv(int m, int n, ref DualNumber[,] a, int ia, int ja, int opa, ref DualNumber[] x, int ix, ref DualNumber[] y, int iy)
        {
            int i = 0;
            DualNumber v = 0;
            int i_ = 0;
            int i1_ = 0;

            if (m == 0)
            {
                return;
            }
            if (n == 0)
            {
                for (i = 0; i <= m - 1; i++)
                {
                    y[iy + i] = 0;
                }
                return;
            }
            //if (ablasf.rmatrixmvf(m, n, ref a, ia, ja, opa, ref x, ix, ref y, iy))
            //{
            //    return;
            //}
            if (opa == 0)
            {

                //
                // y = A*x
                //
                for (i = 0; i <= m - 1; i++)
                {
                    i1_ = (ix) - (ja);
                    v = 0.0;
                    for (i_ = ja; i_ <= ja + n - 1; i_++)
                    {
                        v += a[ia + i, i_] * x[i_ + i1_];
                    }
                    y[iy + i] = v;
                }
                return;
            }
            if (opa == 1)
            {
                throw new NotImplementedException();
            }
        }
Пример #6
0
        //hashCode
        public DualMatrix(DualNumber[,] entries)
        {
            if (entries == null)
            {
                throw new ArgumentNullException();
            }

            for (int i = 0; i < entries.GetLength(0); i++)
            {
                for (int j = 0; j < entries.GetLength(1); j++)
                {
                    if (entries[i, j] == null)
                    {
                        throw new ArgumentNullException();
                    }
                }
            }

            this.entries = (DualNumber[,])entries.Clone();
        }
        private static DualMatrix Inverse(DualMatrix matrix, int m, int n, Matrix inverse)
        {
            if (n < 0)
            {
                // Return a matrix without derivatives information (using the implicit matrix conversion).
                return inverse;
            }

            double[,][] gradientArrays = new double[m, m][];

            // Compute all gradients in the first loop. These are used to compute the Hessian.

            for (int i0 = 0; i0 < m; i0++)
            {
                for (int j0 = 0; j0 < m; j0++)
                {
                    double[] gradientArray = new double[n];

                    for (int i = 0; i < n; i++)
                    {
                        // Formula (36) in The Matrix Cookbook.

                        double s = 0.0;
                        for (int k = 0; k < m; k++)
                        {
                            for (int l = 0; l < m; l++)
                            {
                                s += inverse[i0, k] * matrix[k, l].Gradient[i] * inverse[l, j0];
                            }
                        }
                        gradientArray[i] = -s;
                    }

                    gradientArrays[i0, j0] = gradientArray;
                }
            }

            // Compute Hessians and DualNumber instances.

            DualNumber[,] a = new DualNumber[m, m];
            for (int i0 = 0; i0 < m; i0++)
            {
                for (int j0 = 0; j0 < m; j0++)
                {
                    double[] hessianArray = new double[n * (n + 1) / 2];

                    for (int i = 0, h = 0; i < n; i++)
                    {
                        for (int j = i; j < n; j++, h++)
                        {
                            double s = 0.0;
                            for (int k = 0; k < m; k++)
                            {
                                for (int l = 0; l < m; l++)
                                {
                                    s += gradientArrays[i0, k][i] * matrix[k, l].Gradient[j] * inverse[l, j0]
                                        + inverse[i0, k] * matrix[k, l].Gradient[h] * inverse[l, j0]
                                        + inverse[i0, k] * matrix[k, l].Gradient[j] * gradientArrays[l, j0][i];
                                }
                            }
                            hessianArray[h] = -s;
                        }
                    }

                    a[i0, j0] = new DualNumber(inverse[i0, j0], gradientArrays[i0, j0], hessianArray);
                }
            }

            return new DualMatrix(a);
        }
        public void Test(IPoint point)
        {
            // http://en.wikipedia.org/wiki/Finite_difference_coefficients

            //int k = 2;
            //int[] xdelta = new int[] { 0, 1 };
            //double[] wdelta = new double[] { -1.0, 1.0 };

            //int k = 2;
            //int[] xdelta = new int[] { -1, 1 };
            //double[] wdelta = new double[] { -0.5, 0.5 };

            int k = 4;
            int[] xdelta = new int[] { -2, -1, 1, 2 };
            double[] wdelta = new double[] { 0.083333333333333329, -0.66666666666666663, 0.66666666666666663, -0.083333333333333329 };

            //int k = 6;
            //int[] xdelta = new int[] { -3, -2, -1, 1, 2, 3 };
            //double[] wdelta = new double[] { -0.016666666666666666, 0.15, -0.75, 0.75, -0.15, 0.016666666666666666 };

            // The following test code is heavily inspired by Ipopt::TNLPAdapter::CheckDerivatives in IPOPT (see IpTNLPAdapter.cpp).

            Console.WriteLine("Evaluating unperturbed function");
            Console.WriteLine();

            DualNumber y = Compute(point);
            double[] delta = new double[n];
            DualNumber[] ydelta = new DualNumber[n];

            Console.WriteLine("Starting derivative checker for first derivatives");
            Console.WriteLine();

            for (int i = 0; i < n; i++)
            {
                double exact = y.Gradient[i];

                try
                {
                    if (point[variables[i]] != 0.0)
                    {
                        delta[i] = perturbation * Math.Abs(point[variables[i]]);
                    }
                    else
                    {
                        // Don't know the scale in this particular case. Choose an arbitrary scale (i.e. 1).
                        delta[i] = perturbation;
                    }

                    double approx = 0.0;
                    for (int j = 0; j < k; j++)
                    {
                        approx += wdelta[j] * ComputeDelta(point, i, xdelta[j] * delta[i]).Value;
                    }
                    approx /= delta[i];

                    ydelta[i] = ComputeDelta(point, i, delta[i]);
                    //approx = (ydelta[i].Value - y.Value) / delta[i];
                    double relativeError = Math.Abs(approx - exact) / Math.Max(1.0, Math.Abs(approx));

                    bool error = relativeError >= tolerance;
                    if (error || showAll)
                    {
                        Console.WriteLine("{0} Gradient [{1} {2}] = {3} ~ {4} [{5}]",
                            error ? "*" : " ", FormatIndex(-1), FormatIndex(i), FormatValue(exact), FormatValue(approx), FormatRelativeValue(relativeError));
                    }
                }
                catch (ArithmeticException)
                {
                    Console.WriteLine("* Gradient [{0} {1}] = {2} ~ FAILED", FormatIndex(-1), FormatIndex(i), FormatValue(exact));
                }
            }

            Console.WriteLine();
            Console.WriteLine();
            Console.WriteLine("Starting derivative checker for second derivatives");
            Console.WriteLine();

            for (int i = 0; i < n; i++)
            {
                // Though the Hessian is supposed to be symmetric test the full matrix anyway
                // (the finite difference could very well be different and provide insight).
                for (int j = 0; j < n; j++)
                {
                    double exact = y.Hessian[i, j];

                    try
                    {
                        double approx = 0.0;
                        for (int l = 0; l < k; l++)
                        {
                            approx += wdelta[l] * ComputeDelta(point, i, xdelta[l] * delta[i]).Gradient[j];
                        }
                        approx /= delta[i];

                        //approx = (ydelta[i].Gradient[j] - y.Gradient[j]) / delta[i];
                        double relativeError = Math.Abs(approx - exact) / Math.Max(1.0, Math.Abs(approx));

                        bool error = relativeError >= tolerance;
                        if (error || showAll)
                        {
                            Console.WriteLine("{0} Hessian  [{1},{2}] = {3} ~ {4} [{5}]",
                                error ? "*" : " ", FormatIndex(i), FormatIndex(j), FormatValue(exact), FormatValue(approx), FormatRelativeValue(relativeError));
                        }
                    }
                    catch (ArithmeticException)
                    {
                        Console.WriteLine("* Hessian  [{0},{1}] = {2} ~ FAILED", FormatIndex(i), FormatIndex(j), FormatValue(exact));
                    }
                }
            }
        }
Пример #9
0
        public static DualNumber Sqrt(DualNumber f)
        {
            double g = Math.Sqrt(f.value);
            double g1 = 0.5 / g;
            double g11 = -0.5 * g1 / f.value;

            return new DualNumber(f, g, g1, g11);
        }
Пример #10
0
 public static DualNumber Sqr(DualNumber f)
 {
     return new DualNumber(f, f.value * f.value, 2.0 * f.value, 2.0);
 }
        private static bool spdmatrixcholeskyrec(ref DualNumber[,] a, int offs, int n, bool isupper, ref DualNumber[] tmp)
        {
            bool result = new bool();
            //int n1 = 0;
            //int n2 = 0;

            //
            // check N
            //
            if (n < 1)
            {
                result = false;
                return result;
            }

            //
            // special cases
            //
            if (n == 1)
            {
                if (a[offs, offs].Value > 0.0)
                {
                    a[offs, offs] = DualNumber.Sqrt(a[offs, offs]);
                    result = true;
                }
                else
                {
                    result = false;
                }
                return result;
            }
            //if (n <= ablas.ablasblocksize(ref a))
            {
                result = spdmatrixcholesky2(ref a, offs, n, isupper, ref tmp);
                return result;
            }
        }
Пример #12
0
 public static DualNumber Min(DualNumber f, DualNumber g)
 {
     // Like the step function.
     return f.Value < g.Value ? f : g;
 }
Пример #13
0
        public DualMatrix SetEntry(int row, int column, DualNumber value)
        {
            if (row < 0 || row >= Rows || column < 0 || column >= Columns)
            {
                throw new ArgumentOutOfRangeException();
            }

            DualMatrix a = new DualMatrix(entries);
            a[row, column] = value;

            return a;
        }
Пример #14
0
        public static DualNumber Exp(DualNumber f)
        {
            double g = Math.Exp(f.value);
            double g1 = g;
            double g11 = g;

            return new DualNumber(f, g, g1, g11);
        }
Пример #15
0
        public static DualNumber Log(DualNumber f)
        {
            double g = Math.Log(f.value);
            double g1 = 1.0 / f.value;
            double g11 = -g1 / f.value;

            return new DualNumber(f, g, g1, g11);
        }
Пример #16
0
 static DualNumber()
 {
     // Used very often (e.g. in matrix initialization).
     zero = new DualNumber(0.0);
 }
Пример #17
0
        /// <summary>
        /// Perform the binary operation h(x)=g(f_1(x),f_2(x)). Using the chain rule we're able to compute
        /// h(x), h'(x), and h''(x). The value and the first and second partial derivatives of the outer
        /// function (the binary operation) must be specified.
        /// </summary>
        /// <param name="f1">The first inner function f_1 (left of the binary operator).</param>
        /// <param name="f2">The second inner function f_2 (right of the binary operator).</param>
        /// <param name="g">g(f_1(x),f_2(x)).</param>
        /// <param name="g1">The partial derivative $\frac{\partial g}{\partial x_1}(f_1(x),f_2(x))$.</param>
        /// <param name="g2">The partial derivative $\frac{\partial g}{\partial x_2}(f_1(x),f_2(x))$.</param>
        /// <param name="g11">The partial derivative $\frac{\partial^2g}{\partial x_1^2}(f_1(x),f_2(x))$.</param>
        /// <param name="g12">The partial derivative $\frac{\partial^2g}{\partial x_1\partial x_2}(f_1(x),f_2(x))$.</param>
        /// <param name="g22">The partial derivative $\frac{\partial^2g}{\partial x_2^2}(f_1(x),f_2(x))$.</param>
        public DualNumber(DualNumber f1, DualNumber f2, double g, double g1, double g2, double g11, double g12, double g22)
        {
            value = g;

            if (f1.gradientArray != null || f2.gradientArray != null)
            {
                if (f1.gradientArray != null && f2.gradientArray != null && f1.n != f2.n)
                {
                    throw new ArgumentException("Inconsistent number of derivatives.");
                }

                // One of the counters may be zero if the corresponding DualNumber is a constant.
                n = Math.Max(f1.n, f2.n);
                gradientArray = new double[n];

                if (g1 != 0.0 && f1.gradientArray != null)
                {
                    for (int i = 0; i < n; i++)
                    {
                        gradientArray[i] += g1 * f1.gradientArray[i];
                    }
                }

                if (g2 != 0.0 && f2.gradientArray != null)
                {
                    for (int i = 0; i < n; i++)
                    {
                        gradientArray[i] += g2 * f2.gradientArray[i];
                    }
                }

                if (f1.hessianArray != null || f2.hessianArray != null || g11 != 0.0 || g12 != 0.0 || g22 != 0.0)
                {
                    hessianArray = new double[HessianSize(n)];

                    if (g1 != 0.0 && f1.hessianArray != null)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g1 * f1.hessianArray[k];
                            }
                        }
                    }

                    if (g2 != 0.0 && f2.hessianArray != null)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g2 * f2.hessianArray[k];
                            }
                        }
                    }

                    if (g11 != 0.0 && f1.gradientArray != null)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g11 * f1.gradientArray[i] * f1.gradientArray[j];
                            }
                        }
                    }

                    if (g22 != 0.0 && f2.gradientArray != null)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g22 * f2.gradientArray[i] * f2.gradientArray[j];
                            }
                        }
                    }

                    if (g12 != 0.0 && f1.gradientArray != null && f2.gradientArray != null)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g12 * (f1.gradientArray[i] * f2.gradientArray[j] + f2.gradientArray[i] * f1.gradientArray[j]);
                            }
                        }
                    }
                }
            }
        }
Пример #18
0
        /// <summary>
        /// Perform the unary operation h(x)=g(f(x)). Using the chain rule we're able to compute
        /// h(x), h'(x), and h''(x). The value and the first and second derivative of the outer
        /// function (the unary operation) must be specified.
        /// </summary>
        /// <param name="f">The inner function f.</param>
        /// <param name="g">g(f(x)).</param>
        /// <param name="g1">g'(f(x)).</param>
        /// <param name="g11">g''(f(x)).</param>
        public DualNumber(DualNumber f, double g, double g1, double g11)
        {
            value = g;

            if (f.gradientArray != null)
            {
                n = f.n;
                gradientArray = new double[n];

                if (g1 != 0.0)
                {
                    for (int i = 0; i < n; i++)
                    {
                        gradientArray[i] += g1 * f.gradientArray[i];
                    }
                }

                if (f.hessianArray != null || g11 != 0.0)
                {
                    hessianArray = new double[HessianSize(n)];

                    if (g1 != 0.0 && f.hessianArray != null)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g1 * f.hessianArray[k];
                            }
                        }
                    }

                    if (g11 != 0.0)
                    {
                        for (int i = 0, k = 0; i < n; i++)
                        {
                            for (int j = i; j < n; j++, k++)
                            {
                                hessianArray[k] += g11 * f.gradientArray[i] * f.gradientArray[j];
                            }
                        }
                    }
                }
            }
        }
        private static DualMatrix InverseDirect(int m, DualMatrix matrix, DualNumber determinant)
        {
            if (m == 1)
            {
                DualNumber a11 = matrix[0, 0];
                return new DualMatrix(new DualNumber[,] { { 1.0 / a11 } });
            }
            else if (m == 2)
            {
                DualNumber a11 = matrix[0, 0];
                DualNumber a12 = matrix[0, 1];
                DualNumber a21 = matrix[1, 0];
                DualNumber a22 = matrix[1, 1];
                return new DualMatrix(new DualNumber[,] { { a22 / determinant, -a12 / determinant }, { -a21 / determinant, a11 / determinant } });
            }
            else if (m == 3)
            {
                DualNumber a11 = matrix[0, 0];
                DualNumber a12 = matrix[0, 1];
                DualNumber a13 = matrix[0, 2];
                DualNumber a21 = matrix[1, 0];
                DualNumber a22 = matrix[1, 1];
                DualNumber a23 = matrix[1, 2];
                DualNumber a31 = matrix[2, 0];
                DualNumber a32 = matrix[2, 1];
                DualNumber a33 = matrix[2, 2];

                // Using http://mathworld.wolfram.com/MatrixInverse.html.
                return new DualMatrix(new DualNumber[,] {
                    { (a22 * a33 - a23 * a32) / determinant, (a13 * a32 - a12 * a33) / determinant, (a12 * a23 - a13 * a22) / determinant },
                    { (a23 * a31 - a21 * a33) / determinant, (a11 * a33 - a13 * a31) / determinant, (a13 * a21 - a11 * a23) / determinant },
                    { (a21 * a32 - a22 * a31) / determinant, (a12 * a31 - a11 * a32) / determinant, (a11 * a22 - a12 * a21) / determinant }
                });
            }
            else
            {
                throw new NotImplementedException();
            }
        }
Пример #20
0
        public DualMatrix(Matrix values, Matrix[] gradients, Matrix[,] hessians)
        {
            if (values == null || gradients == null || hessians == null)
            {
                throw new ArgumentNullException();
            }

            int rows = values.Rows;
            int columns = values.Columns;

            entries = new DualNumber[rows, columns];

            int n = 0;

            if (gradients != null)
            {
                n = gradients.Length;

                for (int i = 0; i < n; i++)
                {
                    if (gradients[i] == null)
                    {
                        throw new ArgumentNullException("gradients", "The gradients must be fully specified.");
                    }

                    if (gradients[i].Rows != rows || gradients[i].Columns != columns)
                    {
                        throw new ArgumentException("Inconsistent matrix sizes.");
                    }
                }
            }

            if (hessians != null)
            {
                if (gradients == null)
                {
                    throw new ArgumentException("The gradients must be specified if the Hessians are specified.");
                }

                if (hessians.GetLength(0) != n || hessians.GetLength(1) != n)
                {
                    throw new ArgumentException("Inconsistent number of derivatives.");
                }

                for (int i = 0; i < n; i++)
                {
                    for (int j = 0; j < n; j++)
                    {
                        if (hessians[i, j] == null)
                        {
                            throw new ArgumentNullException("hessians", "The Hessians must be fully specified.");
                        }

                        if (hessians[i, j].Rows != rows || hessians[i, j].Columns != columns)
                        {
                            throw new ArgumentException("Inconsistent matrix sizes.");
                        }
                    }
                }
            }

            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < columns; j++)
                {
                    double value = values[i, j];

                    Vector gradient = null;
                    if (gradients != null)
                    {
                        double[] a = new double[n];
                        for (int k = 0; k < n; k++)
                        {
                            a[k] = gradients[k][i, j];
                        }
                        gradient = new Vector(a);
                    }

                    Matrix hessian = null;
                    if (hessians != null)
                    {
                        double[,] a = new double[n, n];
                        for (int k = 0; k < n; k++)
                        {
                            for (int l = 0; l < n; l++)
                            {
                                a[k, l] = hessians[k, l][i, j];
                            }
                        }
                        hessian = new Matrix(a);
                    }

                    entries[i, j] = new DualNumber(value, gradient, hessian);
                }
            }
        }
        /*************************************************************************
        Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).

        >>> SOURCE LICENSE >>>
        This program is free software; you can redistribute it and/or modify
        it under the terms of the GNU General Public License as published by
        the Free Software Foundation (www.fsf.org); either version 2 of the
        License, or (at your option) any later version.

        This program is distributed in the hope that it will be useful,
        but WITHOUT ANY WARRANTY; without even the implied warranty of
        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        GNU General Public License for more details.

        A copy of the GNU General Public License is available at
        http://www.fsf.org/licensing/licenses

        >>> END OF LICENSE >>>
        *************************************************************************/
        private static DualNumber spdmatrixdet(DualNumber[,] a, int n, bool isupper)
        {
            DualNumber result = 0;

            a = (DualNumber[,])a.Clone();

            if (!spdmatrixcholesky(ref a, n, isupper))
            {
                result = -1;
            }
            else
            {
                result = spdmatrixcholeskydet(ref a, n);
            }
            return result;
        }
Пример #22
0
        public DualNumber[] ToArray()
        {
            int n = Length;

            DualNumber[] a = new DualNumber[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = inner[i, 0];
            }

            return a;
        }
Пример #23
0
        public static DualNumber Pow(DualNumber f, double a)
        {
            double g = Math.Pow(f.value, a);
            double g1 = a * Math.Pow(f.value, a - 1.0);
            double g11 = a * (a - 1.0) * Math.Pow(f.value, a - 2.0);

            return new DualNumber(f, g, g1, g11);
        }
 private static void spdmatrixinverse(ref DualNumber[,] a, int n, bool isupper, ref int info)
 {
     if (n < 1)
     {
         info = -1;
         return;
     }
     info = 1;
     if (spdmatrixcholesky(ref a, n, isupper))
     {
         spdmatrixcholeskyinverse(ref a, n, isupper, ref info);
     }
     else
     {
         info = -3;
     }
 }
Пример #25
0
        public DualNumber[][] ToJaggedArray()
        {
            DualNumber[][] entries = new DualNumber[Rows][];
            for (int i = 0; i < Rows; i++)
            {
                entries[i] = new DualNumber[Columns];
                for (int j = 0; j < Columns; j++)
                {
                    entries[i][j] = this[i, j];
                }
            }

            return entries;
        }
Пример #26
0
        public static DualNumber Pow(double a, DualNumber f)
        {
            double g = Math.Pow(a, f.value);
            double c = Math.Log(a);
            double g1 = c * g;
            double g11 = c * g1;

            return new DualNumber(f, g, g1, g11);
        }
Пример #27
0
 public DualVector SetEntry(int index, DualNumber t)
 {
     return new DualVector(inner.SetEntry(index, 0, t));
 }
Пример #28
0
        public static DualNumber Pow(DualNumber f1, DualNumber f2)
        {
            double g = Math.Pow(f1.value, f2.value);

            double c1 = Math.Pow(f1.value, f2.value - 1.0);
            double g1 = f2.value * c1;
            double g11 = f2.value * (f2.value - 1.0) * Math.Pow(f1.value, f2.value - 2.0);

            double c2 = Math.Log(f1.value);
            double g2 = c2 * g;
            double g22 = c2 * g2;

            double g12 = c1 * (1.0 + c2 * f2.value);

            return new DualNumber(f1, f2, g, g1, g2, g11, g12, g22);
        }
Пример #29
0
 public static DualNumber Sin(DualNumber f)
 {
     double g = Math.Sin(f.value);
     double g1 = Math.Cos(f.value);
     double g11 = -g;
     return new DualNumber(f, g, g1, g11);
 }
        private static void spdmatrixcholeskyinverserec(ref DualNumber[,] a, int offs, int n, bool isupper, ref DualNumber[] tmp)
        {
            int i = 0;
            int j = 0;
            DualNumber v = 0;
            //int n1 = 0;
            //int n2 = 0;
            int info2 = 0;
            //matinvreport rep2 = new matinvreport();
            int i_ = 0;
            int i1_ = 0;

            if (n < 1)
            {
                return;
            }

            //
            // Base case
            //
            //if (n <= ablas.ablasblocksize(ref a))
            {
                rmatrixtrinverserec(ref a, offs, n, isupper, false, ref tmp, ref info2);
                if (isupper)
                {
                    throw new NotImplementedException();
                }
                else
                {

                    //
                    // Compute the product L' * L
                    // NOTE: we never assume that diagonal of L is real
                    //
                    for (i = 0; i <= n - 1; i++)
                    {
                        if (i == 0)
                        {

                            //
                            // 1x1 matrix
                            //
                            a[offs + i, offs + i] = DualNumber.Sqr(a[offs + i, offs + i]);
                        }
                        else
                        {

                            //
                            // (I+1)x(I+1) matrix,
                            //
                            // ( A11^H  A21^H )   ( A11      )   ( A11^H*A11+A21^H*A21  A21^H*A22 )
                            // (              ) * (          ) = (                                )
                            // (        A22^H )   ( A21  A22 )   ( A22^H*A21            A22^H*A22 )
                            //
                            // A11 is IxI, A22 is 1x1.
                            //
                            i1_ = (offs) - (0);
                            for (i_ = 0; i_ <= i - 1; i_++)
                            {
                                tmp[i_] = a[offs + i, i_ + i1_];
                            }
                            for (j = 0; j <= i - 1; j++)
                            {
                                v = a[offs + i, offs + j];
                                i1_ = (0) - (offs);
                                for (i_ = offs; i_ <= offs + j; i_++)
                                {
                                    a[offs + j, i_] = a[offs + j, i_] + v * tmp[i_ + i1_];
                                }
                            }
                            v = a[offs + i, offs + i];
                            for (i_ = offs; i_ <= offs + i - 1; i_++)
                            {
                                a[offs + i, i_] = v * a[offs + i, i_];
                            }
                            a[offs + i, offs + i] = DualNumber.Sqr(a[offs + i, offs + i]);
                        }
                    }
                }
                return;
            }
        }