Пример #1
0
        //====================================================================
        // Generate Word according the segmentation route
        //====================================================================
        private static WordResult[] GenerateWord(int[] uniPath, WordLinkedArray linkedArray, RowFirstDynamicArray <ChainContent> m_graphOptimum)
        {
            if (linkedArray.Count == 0)
            {
                return(null);
            }

            //--------------------------------------------------------------------
            //Merge all seperate continue num into one number
            MergeContinueNumIntoOne(ref linkedArray);

            //--------------------------------------------------------------------
            //The delimiter "--"
            ChangeDelimiterPOS(ref linkedArray);

            //--------------------------------------------------------------------
            //如果前一个词是数字,当前词以“-”或“-”开始,并且不止这一个字符,
            //那么将此“-”符号从当前词中分离出来。
            //例如 “3 / -4 / 月”需要拆分成“3 / - / 4 / 月”
            SplitMiddleSlashFromDigitalWords(ref linkedArray);

            //--------------------------------------------------------------------
            //1、如果当前词是数字,下一个词是“月、日、时、分、秒、月份”中的一个,则合并,且当前词词性是时间
            //2、如果当前词是可以作为年份的数字,下一个词是“年”,则合并,词性为时间,否则为数字。
            //3、如果最后一个汉字是"点" ,则认为当前数字是时间
            //4、如果当前串最后一个汉字不是"∶·./"和半角的'.''/',那么是数
            //5、当前串最后一个汉字是"∶·./"和半角的'.''/',且长度大于1,那么去掉最后一个字符。例如"1."
            CheckDateElements(ref linkedArray);

            //--------------------------------------------------------------------
            //输出结果
            WordResult[] result = new WordResult[linkedArray.Count];

            WordNode pCur = linkedArray.first;
            int      i    = 0;

            while (pCur != null)
            {
                WordResult item = new WordResult();
                item.sWord  = pCur.theWord.sWord;
                item.nPOS   = pCur.theWord.nPOS;
                item.dValue = pCur.theWord.dValue;
                result[i]   = item;

                m_graphOptimum.SetElement(pCur.row, pCur.col, new ChainContent(item.dValue, item.nPOS, pCur.sWordInSegGraph));

                pCur = pCur.next;
                i++;
            }

            return(result);
        }
Пример #2
0
        //Unknown word recognition
        //pWordSegResult:word Segmentation result;
        //graphOptimum: The optimized segmentation graph
        //graphSeg: The original segmentation graph
        public bool Recognition(WordResult[] pWordSegResult, RowFirstDynamicArray <ChainContent> graphOptimum,
                                List <AtomNode> atomSegment, WordDictionary dictCore)
        {
            ChainItem <ChainContent> item;
            int    nStartPos = 0, j = 0, nAtomStart, nAtomEnd, nPOSOriginal;
            double dValue;

            m_roleTag.POSTagging(pWordSegResult, dictCore, m_dict);
            //Tag the segmentation with unknown recognition roles according the core dictionary and unknown recognition dictionary
            for (int i = 0; i < m_roleTag.m_nUnknownWordsCount; i++)
            {
                while (j < atomSegment.Count && nStartPos < m_roleTag.m_nUnknownWords[i, 0])
                {
                    nStartPos += atomSegment[j++].sWord.Length;
                }

                nAtomStart = j;
                while (j < atomSegment.Count && nStartPos < m_roleTag.m_nUnknownWords[i, 1])
                {
                    nStartPos += atomSegment[j++].sWord.Length;
                }

                nAtomEnd = j;
                if (nAtomStart < nAtomEnd)
                {
                    item = graphOptimum.GetElement(nAtomStart, nAtomEnd);
                    if (item != null)
                    {
                        dValue       = item.Content.eWeight;
                        nPOSOriginal = item.Content.nPOS;
                    }
                    else
                    {
                        dValue = Predefine.INFINITE_VALUE;
                    }

                    if (dValue > m_roleTag.m_dWordsPossibility[i])
                    {
                        //Set the element with less frequency
                        graphOptimum.SetElement(nAtomStart, nAtomEnd, new ChainContent(m_roleTag.m_dWordsPossibility[i], m_nPOS, m_sUnknownFlags));
                    }
                }
            }
            return(true);
        }
Пример #3
0
        //====================================================================
        // Func Name  : GenerateWordNet
        // Description: Generate the segmentation word net according
        //              the original sentence
        // Parameters : sSentence: the sentence
        //              dictCore : core dictionary
        //              bOriginalFreq=false: output original frequency
        // Returns    : bool
        //====================================================================
        public static RowFirstDynamicArray <ChainContent> GenerateWordNet(List <AtomNode> atomSegment, WordDictionary coreDict)
        {
            string sWord = "", sMaxMatchWord;
            int    nPOSRet, nPOS, nTotalFreq;
            double dValue = 0;

            RowFirstDynamicArray <ChainContent> m_segGraph = new RowFirstDynamicArray <ChainContent>();

            m_segGraph.SetEmpty();

            // 将原子部分存入m_segGraph
            for (int i = 0; i < atomSegment.Count; i++)//Init the cost array
            {
                if (atomSegment[i].nPOS == Predefine.CT_CHINESE)
                {
                    m_segGraph.SetElement(i, i + 1, new ChainContent(0, 0, atomSegment[i].sWord));
                }
                else
                {
                    sWord  = atomSegment[i].sWord;//init the word
                    dValue = Predefine.MAX_FREQUENCE;
                    switch (atomSegment[i].nPOS)
                    {
                    case Predefine.CT_INDEX:
                    case Predefine.CT_NUM:
                        nPOS   = -27904;//'m'*256
                        sWord  = "未##数";
                        dValue = 0;
                        break;

                    case Predefine.CT_DELIMITER:
                        nPOS = 30464;//'w'*256;
                        break;

                    case Predefine.CT_LETTER:
                        nPOS   = -28280; // -'n' * 256 - 'x';
                        dValue = 0;
                        sWord  = "未##串";
                        break;

                    case Predefine.CT_SINGLE://12021-2129-3121
                        if (Regex.IsMatch(atomSegment[i].sWord, @"^(-?\d+)(\.\d+)?$"))
                        {
                                                //匹配浮点数
                            {
                                nPOS  = -27904; //'m'*256
                                sWord = "未##数";
                            }
                        }
                        else
                        {
                            nPOS  = -28280; // -'n' * 256 - 'x'
                            sWord = "未##串";
                        }
                        dValue = 0;
                        break;

                    default:
                        nPOS = atomSegment[i].nPOS;//'?'*256;
                        break;
                    }
                    m_segGraph.SetElement(i, i + 1, new ChainContent(dValue, nPOS, sWord));//init the link with minimum
                }
            }

            // 将所有可能的组词存入m_segGraph
            for (int i = 0; i < atomSegment.Count; i++) //All the word
            {
                sWord = atomSegment[i].sWord;           //Get the current atom
                int j = i + 1;

                while (j < atomSegment.Count && coreDict.GetMaxMatch(sWord, out sMaxMatchWord, out nPOSRet))
                {
                    if (sMaxMatchWord == sWord)                      // 就是我们要找的词
                    {
                        WordInfo info = coreDict.GetWordInfo(sWord); // 该词可能就有多种词性

                        // 计算该词的所有词频之和
                        nTotalFreq = 0;
                        for (int k = 0; k < info.Count; k++)
                        {
                            nTotalFreq += info.Frequencies[k];
                        }

                        // 限制出现某些特殊词
                        if (sWord.Length == 2 && (sWord.StartsWith("年") || sWord.StartsWith("月")) && i >= 1 &&
                            (Utility.IsAllNum(atomSegment[i - 1].sWord) ||
                             Utility.IsAllChineseNum(atomSegment[i - 1].sWord)))
                        {
                            //1年内、1999年末
                            if ("末内中底前间初".IndexOf(sWord.Substring(1)) >= 0)
                            {
                                break;
                            }
                        }

                        // 如果该词只有一个词性,则存储,否则词性记录为 0
                        if (info.Count == 1)
                        {
                            m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, info.POSs[0], sWord));
                        }
                        else
                        {
                            m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, 0, sWord));
                        }
                    }

                    sWord += atomSegment[j++].sWord;
                }
            }
            return(m_segGraph);
        }