Пример #1
0
        private async Task <SimilarFaceMatch> GetSimilarFace(Face detectedFace)
        {
            SimilarFaceMatch result = new SimilarFaceMatch();

            try
            {
                Tuple <SimilarPersistedFace, string> similarPersistedFace = await FaceListManager.FindSimilarPersistedFaceAsync(await this.GetImageStreamCallback(), detectedFace.FaceId, detectedFace.FaceRectangle);

                if (similarPersistedFace != null)
                {
                    bool isNew = (similarPersistedFace.Item2 == null);
                    result = new SimilarFaceMatch()
                    {
                        Face = detectedFace, SimilarPersistedFace = similarPersistedFace.Item1, isNew = isNew
                    };
                }
            }
            catch (Exception e)
            {
                ErrorTrackingHelper.TrackException(e, "FaceListManager.FindSimilarPersistedFaceAsync error");

                if (this.ShowDialogOnFaceApiErrors)
                {
                    await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Failure finding similar faces");
                }
            }

            return(result);
        }
        public async Task FindSimilarPersistedFacesAsync()
        {
            this.SimilarFaceMatches = Enumerable.Empty <SimilarFaceMatch>();

            if (this.DetectedFaces == null || !this.DetectedFaces.Any())
            {
                return;
            }

            List <SimilarFaceMatch> result = new List <SimilarFaceMatch>();

            foreach (DetectedFace detectedFace in this.DetectedFaces)
            {
                try
                {
                    SimilarFace similarPersistedFace = null;
                    if (this.ImageUrl != null)
                    {
                        similarPersistedFace = await FaceListManager.FindSimilarPersistedFaceAsync(ImageUrl, detectedFace.FaceId.GetValueOrDefault(), detectedFace);
                    }
                    else
                    {
                        similarPersistedFace = await FaceListManager.FindSimilarPersistedFaceAsync(this.GetImageStreamCallback, detectedFace.FaceId.GetValueOrDefault(), detectedFace);
                    }
                    if (similarPersistedFace != null)
                    {
                        result.Add(new SimilarFaceMatch {
                            Face = detectedFace, SimilarPersistedFace = similarPersistedFace
                        });
                    }
                }
                catch (Exception e)
                {
                    ErrorTrackingHelper.TrackException(e, "FaceListManager.FindSimilarPersistedFaceAsync error");

                    if (this.ShowDialogOnFaceApiErrors)
                    {
                        await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Failure finding similar faces");
                    }
                }
            }

            this.SimilarFaceMatches = result;
        }
Пример #3
0
        public async Task <List <FaceSendInfo> > FindSimilarPersonWithEmotion()
        {
            var facesInfo = new List <FaceSendInfo>();
            List <SimilarFaceMatch> result = new List <SimilarFaceMatch>();

            //Loop thru all detected faces from previous steps and fill the facesInfo array
            //For ease of processing in Azure Stream Analytics we create single level object
            foreach (var f in this.DetectedFaces)
            {
                var fsi = new FaceSendInfo();

                //Add emotions
                var e = CoreUtil.FindEmotionForFace(f, this.DetectedEmotion);
                FeedFaceInfo(f, fsi, e);
                //We sen also info how many faces in total were recognized on the picture with current face
                fsi.facesNo = this.DetectedFaces.Count();



                Tuple <SimilarPersistedFace, string> similarPersistedFace = await FaceListManager.FindSimilarPersistedFaceAsync(await this.GetImageStreamCallback(), f.FaceId, f.FaceRectangle);

                if (similarPersistedFace != null)
                {
                    result.Add(new SimilarFaceMatch {
                        Face = f, SimilarPersistedFace = similarPersistedFace.Item1
                    });
                    fsi.canid   = similarPersistedFace.Item1.PersistedFaceId.ToString();
                    fsi.canconf = similarPersistedFace.Item1.Confidence;

                    //In order to get also name we need to obtain Person
                    //p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId);
                    fsi.canname = similarPersistedFace.Item1.PersistedFaceId.ToString();
                }

                facesInfo.Add(fsi);
            }
            SimilarFaceMatches = result;
            return(facesInfo);
        }
Пример #4
0
        public async Task <List <FaceSendInfo> > IdentifyOrAddPersonWithEmotionsAsync(string groupName, ObservableCollection <IdentifiedFaces> identifiedPersonsIdCollection)
        {
            var facesInfo = new List <FaceSendInfo>();

            //Loop thru all detected faces from previous steps and fill the facesInfo array
            //For ease of processing in Azure Stream Analytics we create single level object
            foreach (var f in this.DetectedFaces)
            {
                var fsi = new FaceSendInfo();

                //Add emotions
                var e = CoreUtil.FindEmotionForFace(f, this.DetectedEmotion);
                FeedFaceInfo(f, fsi, e);
                //We sen also info how many faces in total were recognized on the picture with current face
                fsi.facesNo = this.DetectedFaces.Count();

                facesInfo.Add(fsi);
            }

            //Now we proceed to face recognition/identification
            //First we create group if it does not exist
            try
            {
                var g = await FaceServiceHelper.CreatePersonGroupIfNoGroupExists(groupName);

                groupId = g.PersonGroupId;
            }
            catch (Exception e)
            {
                // Catch errors with individual groups so we can continue looping through all groups. Maybe an answer will come from
                // another one.
                ErrorTrackingHelper.TrackException(e, "Problem creating group");

                if (this.ShowDialogOnFaceApiErrors)
                {
                    await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem creating group");
                }
            }


            //We need to find candidate for every face
            try
            {
                IdentifyResult[] groupResults = await this.IdentifyFacesAsync(groupId);

                //We loop thri all faces again in order to find candidate
                foreach (var f in this.DetectedFaces)
                {
                    bool needToRetrain = true;
                    var  fi            = facesInfo.Where(fin => fin.faceId == f.FaceId.ToString()).FirstOrDefault();
                    var  newPersonID   = Guid.NewGuid();

                    if (groupResults != null && groupResults.Where(gr => gr.FaceId == f.FaceId).Any() && groupResults.Where(gr => gr.FaceId == f.FaceId).FirstOrDefault().Candidates.Any())
                    {
                        var candidates = groupResults.Where(gr => gr.FaceId == f.FaceId).FirstOrDefault().Candidates.OrderByDescending(ca => ca.Confidence);

                        Person p   = new Person();
                        var    can = candidates.FirstOrDefault();

                        //If we have sufficient confidence, we add Face for person
                        if (can.Confidence >= SettingsHelper.Instance.Confidence)
                        {
                            fi.canid   = can.PersonId.ToString();
                            fi.canconf = can.Confidence;

                            //In order to get also name we need to obtain Person
                            p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId);

                            fi.canname = p.Name;

                            var identifiedPersonFromList = identifiedPersonsIdCollection.Where(ip => ip.Id == can.PersonId.ToString()).FirstOrDefault();

                            //Check whether we did not added too much photos lately, it is not neccesary to add photo for face every time
                            if (identifiedPersonFromList == null)
                            {
                                await AddFaceToPerson(f, p, can.PersonId);
                            }
                            else if (identifiedPersonFromList.NumOfAddedPhotosInLastPeriod < SettingsHelper.Instance.NumberOfPhotoAddsInPeriod)
                            {
                                await AddFaceToPerson(f, p, can.PersonId);

                                identifiedPersonFromList.NumOfAddedPhotosInLastPeriod++;
                            }
                            else if ((DateTime.Now - identifiedPersonFromList.FirstPhotoAddedInLastPeriod).Hours > SettingsHelper.Instance.PhotoAddPeriodSize)
                            {
                                identifiedPersonFromList.NumOfAddedPhotosInLastPeriod = 1;
                                identifiedPersonFromList.FirstPhotoAddedInLastPeriod  = DateTime.Now;
                                await AddFaceToPerson(f, p, can.PersonId);
                            }
                            else
                            {
                                needToRetrain = false;
                            }
                        }
                        else
                        {
                            //if not sufficient confidence we also need to check whether there is similar face/ if not create new person
                            await CreatePrsonIfNoSimilarFaceExistsAsync(facesInfo, newPersonID, f);
                        }
                    }
                    else
                    {
                        //if no candidate we also need to check whether there is similar fac,e if not create new person
                        await CreatePrsonIfNoSimilarFaceExistsAsync(facesInfo, newPersonID, f);
                    }
                    try
                    {
                        //We need to train after operation on top of group (addition of photo, person etc.)
                        if (needToRetrain)
                        {
                            await FaceServiceHelper.TrainPersonGroupAsync(groupId);
                        }
                    }
                    catch (Exception e)
                    {
                        // Catch error with training of group
                        ErrorTrackingHelper.TrackException(e, "Problem training group");

                        if (this.ShowDialogOnFaceApiErrors)
                        {
                            await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem training group");
                        }
                    }


                    //Handle the identified persons collection to which we locally save every identified person
                    if (!identifiedPersonsIdCollection.Where(ip => ip.Id == fi.canid).Any())
                    {
                        identifiedPersonsIdCollection.Add(new IdentifiedFaces()
                        {
                            Id = fi.canid
                        });
                    }

                    //Increase counter of identifications
                    else if (identifiedPersonsIdCollection.Where(ip => ip.Id == fi.canid).Any())
                    {
                        identifiedPersonsIdCollection.Where(ip => ip.Id == fi.canid).FirstOrDefault().NumberOfIdentifications++;
                    }

                    //Find faces which were wrongly learned (small number of identifications)
                    var tbd = new List <IdentifiedFaces>();
                    foreach (var ip in identifiedPersonsIdCollection)
                    {
                        if (ip.NumberOfIdentifications <= SettingsHelper.Instance.NeededFaceIdentNum && (ip.CreatedAt.AddSeconds(SettingsHelper.Instance.DeleteWindow) < DateTime.Now))
                        {
                            var    g    = (await FaceServiceHelper.GetPersonGroupsAsync()).Where(gr => gr.Name == groupName).FirstOrDefault();
                            Person pers = await FaceServiceHelper.GetPersonAsync(g.PersonGroupId, new Guid(ip.Id));

                            //if we saved insufficient number of faces than delete
                            if (pers.PersistedFaceIds.Length <= SettingsHelper.Instance.NeededFaceIdentNum)
                            {
                                await FaceServiceHelper.DeletePersonAsync(g.PersonGroupId, pers.PersonId);

                                string similarFaceId = "";
                                using (var db = new KioskDBContext())
                                {
                                    var sfToDelete = db.SimilarFaces.Where(sf => sf.PersonId == pers.PersonId.ToString()).FirstOrDefault();
                                    similarFaceId = sfToDelete.FaceId.ToString();
                                    db.SimilarFaces.Remove(sfToDelete);
                                }

                                await FaceListManager.DeleteFaceFromFaceList(similarFaceId);

                                await FaceServiceHelper.TrainPersonGroupAsync(g.PersonGroupId);

                                tbd.Add(ip);
                            }
                        }
                    }


                    foreach (var iptodelete in tbd)
                    {
                        identifiedPersonsIdCollection.Remove(iptodelete);
                    }
                }
            }
            catch (Exception e)
            {
                // Catch error with training of group
                ErrorTrackingHelper.TrackException(e, "Problem with cognitive services");

                if (this.ShowDialogOnFaceApiErrors)
                {
                    await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem with cognitive services");
                }
            }
            return(facesInfo);
        }