Пример #1
0
 /// <summary>
 /// Performs cross validation.
 /// </summary>
 /// <param name="problem">The training data</param>
 /// <param name="parameters">The parameters to test</param>
 /// <param name="nrfold">The number of cross validations to use</param>
 /// <returns>The cross validation score</returns>
 public static double PerformCrossValidation(Problem problem, Parameter parameters, int nrfold)
 {
     string error = Procedures.svm_check_parameter(problem, parameters);
     if (error == null)
         return doCrossValidation(problem, parameters, nrfold);
     else throw new Exception(error);
 }
Пример #2
0
        public static void Main(string[] args)
        {
            Problem train = Problem.Read("a1a.train.txt");
            Problem test = Problem.Read("a1a.test.txt");

            //For this example (and indeed, many scenarios), the default
            //parameters will suffice.
            Parameter parameters = new Parameter();
            double C;
            double Gamma;

            //This will do a grid optimization to find the best parameters
            //and store them in C and Gamma, outputting the entire
            //search to params.txt.

            ParameterSelection.Grid(train, parameters, "params.txt", out C, out Gamma);
            parameters.C = C;
            parameters.Gamma = Gamma;

            //Train the model using the optimal parameters.

            Model model = Training.Train(train, parameters);

            //Perform classification on the test data, putting the
            //results in results.txt.

            Prediction.Predict(test, "results.txt", model, false);
        }
Пример #3
0
 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="rows">Nodes to use as the rows of the matrix</param>
 /// <param name="columns">Nodes to use as the columns of the matrix</param>
 /// <param name="param">Parameters to use when compute similarities</param>
 public PrecomputedKernel(List<Node[]> rows, List<Node[]> columns, Parameter param)
 {
     _rows = rows.Count;
     _columns = columns.Count;
     _similarities = new float[_rows, _columns];
     for (int r = 0; r < _rows; r++)
         for (int c = 0; c < _columns; c++)
             _similarities[r, c] = (float)Kernel.KernelFunction(rows[r], columns[c], param);
 }
Пример #4
0
 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="nodes">Nodes for self-similarity analysis</param>
 /// <param name="param">Parameters to use when computing similarities</param>
 public PrecomputedKernel(List<Node[]> nodes, Parameter param)
 {
     _rows = nodes.Count;
     _columns = _rows;
     _similarities = new float[_rows, _columns];
     for (int r = 0; r < _rows; r++)
     {
         for (int c = 0; c < r; c++)
             _similarities[r, c] = _similarities[c, r];
         _similarities[r, r] = 1;
         for (int c = r + 1; c < _columns; c++)
             _similarities[r, c] = (float)Kernel.KernelFunction(nodes[r], nodes[c], param);
     }
 }
Пример #5
0
        public Kernel(int l, Node[][] x_, Parameter param)
        {
            _kernelType = param.KernelType;
              _degree = param.Degree;
              _gamma = param.Gamma;
              _coef0 = param.Coefficient0;

              _x = (Node[][])x_.Clone();

              if (_kernelType == KernelType.RBF) {
            _xSquare = new double[l];
            for (int i = 0; i < l; i++)
              _xSquare[i] = dot(_x[i], _x[i]);
              } else _xSquare = null;
        }
Пример #6
0
        public Model train(Problem issue)
        {
            var span = Overseer.observe("Training.Parameter-Choosing");
            Parameter parameters = new Parameter();
            parameters.KernelType = KernelType.RBF;
            double C;
            double Gamma;

            ParameterSelection.Grid(issue, parameters, null, out C, out Gamma);
            parameters.C = C;
            parameters.Gamma = Gamma;
            span.die();
            span = Overseer.observe("Training.Training");
            var result = Training.Train(issue, parameters);
            span.die();
            return result;
        }
Пример #7
0
 public static double KernelFunction(Node[] x, Node[] y, Parameter param)
 {
     switch (param.KernelType) {
     case KernelType.LINEAR:
       return dot(x, y);
     case KernelType.POLY:
       return powi(param.Degree * dot(x, y) + param.Coefficient0, param.Degree);
     case KernelType.RBF: {
     double sum = computeSquaredDistance(x, y);
     return Math.Exp(-param.Gamma * sum);
       }
     case KernelType.SIGMOID:
       return Math.Tanh(param.Gamma * dot(x, y) + param.Coefficient0);
     case KernelType.PRECOMPUTED:
       return x[(int)(y[0].Value)].Value;
     default:
       return 0;
       }
 }
Пример #8
0
        ///
        public override void LearnAttributeToFactorMapping()
        {
            var svm_features = new List<Node[]>();
            var relevant_items  = new List<int>();
            for (int i = 0; i < MaxItemID + 1; i++)
            {
                // ignore items w/o collaborative data
                if (Feedback.ItemMatrix[i].Count == 0)
                    continue;
                // ignore items w/o attribute data
                if (item_attributes[i].Count == 0)
                    continue;

                svm_features.Add( CreateNodes(i) );
                relevant_items.Add(i);
            }

            // TODO proper random seed initialization

            Node[][] svm_features_array = svm_features.ToArray();
            var svm_parameters = new Parameter();
            svm_parameters.SvmType = SvmType.EPSILON_SVR;
            //svm_parameters.SvmType = SvmType.NU_SVR;
            svm_parameters.C     = this.c;
            svm_parameters.Gamma = this.gamma;

            models = new Model[num_factors];
            for (int f = 0; f < num_factors; f++)
            {
                double[] targets = new double[svm_features.Count];
                for (int i = 0; i < svm_features.Count; i++)
                {
                    int item_id = relevant_items[i];
                    targets[i] = item_factors[item_id, f];
                }

                Problem svm_problem = new Problem(svm_features.Count, targets, svm_features_array, NumItemAttributes - 1);
                models[f] = SVM.Training.Train(svm_problem, svm_parameters);
            }

            _MapToLatentFactorSpace = Utils.Memoize<int, double[]>(__MapToLatentFactorSpace);
        }
Пример #9
0
 private double TrainAndTest(string trainSet,string testSet, string resultFile)
 {
     Problem train = Problem.Read(trainSet);
     Problem test = Problem.Read(testSet);
     Parameter parameters = new Parameter();
     if (chClassification.Checked)
     {
         parameters.SvmType = SvmType.C_SVC;
         parameters.C = 0.03;
         parameters.Gamma = 0.008;
     }
     else
     {
         parameters.SvmType = SvmType.EPSILON_SVR;
         parameters.C = 8;
         parameters.Gamma = 0.063;
         parameters.P = 0.5;
     }
     Model model = Training.Train(train, parameters);
     return Prediction.Predict(test, resultFile, model, true);
 }
Пример #10
0
 public ONE_CLASS_Q(Problem prob, Parameter param)
     : base(prob.Count, prob.X, param)
 {
     cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
     QD = new float[prob.Count];
     for (int i = 0; i < prob.Count; i++)
         QD[i] = (float)KernelFunction(i, i);
 }
Пример #11
0
        // Stratified cross validation
        public static void svm_cross_validation(Problem prob, Parameter param, int nr_fold, double[] target)
        {
            Random rand = new Random();
            int i;
            int[] fold_start = new int[nr_fold + 1];
            int l = prob.Count;
            int[] perm = new int[l];

            // stratified cv may not give leave-one-out rate
            // Each class to l folds -> some folds may have zero elements
            if ((param.SvmType == SvmType.C_SVC ||
                param.SvmType == SvmType.NU_SVC) && nr_fold < l)
            {
                int[] tmp_nr_class = new int[1];
                int[][] tmp_label = new int[1][];
                int[][] tmp_start = new int[1][];
                int[][] tmp_count = new int[1][];

                svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);

                int nr_class = tmp_nr_class[0];
                //int[] label = tmp_label[0];
                int[] start = tmp_start[0];
                int[] count = tmp_count[0];

                // random shuffle and then data grouped by fold using the array perm
                int[] fold_count = new int[nr_fold];
                int c;
                int[] index = new int[l];
                for (i = 0; i < l; i++)
                    index[i] = perm[i];
                for (c = 0; c < nr_class; c++)
                    for (i = 0; i < count[c]; i++)
                    {
                        int j = i + (int)(rand.NextDouble() * (count[c] - i));
                        do { int _ = index[start[c] + j]; index[start[c] + j] = index[start[c] + i]; index[start[c] + i] = _; } while (false);
                    }
                for (i = 0; i < nr_fold; i++)
                {
                    fold_count[i] = 0;
                    for (c = 0; c < nr_class; c++)
                        fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
                }
                fold_start[0] = 0;
                for (i = 1; i <= nr_fold; i++)
                    fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
                for (c = 0; c < nr_class; c++)
                    for (i = 0; i < nr_fold; i++)
                    {
                        int begin = start[c] + i * count[c] / nr_fold;
                        int end = start[c] + (i + 1) * count[c] / nr_fold;
                        for (int j = begin; j < end; j++)
                        {
                            perm[fold_start[i]] = index[j];
                            fold_start[i]++;
                        }
                    }
                fold_start[0] = 0;
                for (i = 1; i <= nr_fold; i++)
                    fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
            }
            else
            {
                for (i = 0; i < l; i++) perm[i] = i;
                for (i = 0; i < l; i++)
                {
                    int j = i + (int)(rand.NextDouble() * (l - i));
                    do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
                }
                for (i = 0; i <= nr_fold; i++)
                    fold_start[i] = i * l / nr_fold;
            }

            for (i = 0; i < nr_fold; i++)
            {
                int begin = fold_start[i];
                int end = fold_start[i + 1];
                int j, k;
                Problem subprob = new Problem();

                subprob.Count = l - (end - begin);
                subprob.X = new Node[subprob.Count][];
                subprob.Y = new double[subprob.Count];

                k = 0;
                for (j = 0; j < begin; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }
                for (j = end; j < l; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }
                Model submodel = svm_train(subprob, param);
                if (param.Probability &&
                   (param.SvmType == SvmType.C_SVC ||
                    param.SvmType == SvmType.NU_SVC))
                {
                    double[] prob_estimates = new double[svm_get_nr_class(submodel)];
                    for (j = begin; j < end; j++)
                        target[perm[j]] = svm_predict_probability(submodel, prob.X[perm[j]], prob_estimates);
                }
                else
                    for (j = begin; j < end; j++)
                        target[perm[j]] = svm_predict(submodel, prob.X[perm[j]]);
            }
        }
Пример #12
0
        static decision_function svm_train_one(Problem prob, Parameter param, double Cp, double Cn)
        {
            double[] alpha = new double[prob.Count];
            Solver.SolutionInfo si = new Solver.SolutionInfo();
            switch (param.SvmType)
            {
                case SvmType.C_SVC:
                    solve_c_svc(prob, param, alpha, si, Cp, Cn);
                    break;
                case SvmType.NU_SVC:
                    solve_nu_svc(prob, param, alpha, si);
                    break;
                case SvmType.ONE_CLASS:
                    solve_one_class(prob, param, alpha, si);
                    break;
                case SvmType.EPSILON_SVR:
                    solve_epsilon_svr(prob, param, alpha, si);
                    break;
                case SvmType.NU_SVR:
                    solve_nu_svr(prob, param, alpha, si);
                    break;
            }

            Procedures.info("obj = " + si.obj + ", rho = " + si.rho + "\n");

            // output SVs

            int nSV = 0;
            int nBSV = 0;
            for (int i = 0; i < prob.Count; i++)
            {
                if (Math.Abs(alpha[i]) > 0)
                {
                    ++nSV;
                    if (prob.Y[i] > 0)
                    {
                        if (Math.Abs(alpha[i]) >= si.upper_bound_p)
                            ++nBSV;
                    }
                    else
                    {
                        if (Math.Abs(alpha[i]) >= si.upper_bound_n)
                            ++nBSV;
                    }
                }
            }

            Procedures.info("nSV = " + nSV + ", nBSV = " + nBSV + "\n");

            decision_function f = new decision_function();
            f.alpha = alpha;
            f.rho = si.rho;
            return f;
        }
Пример #13
0
 /// <summary>
 /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
 /// combination which performed best.  Uses the default values of C and Gamma.
 /// </summary>
 /// <param name="problem">The training data</param>
 /// <param name="validation">The validation data</param>
 /// <param name="parameters">The parameters to use when optimizing</param>
 /// <param name="outputFile">The output file for the parameter results</param>
 /// <param name="C">The optimal C value will be placed in this variable</param>
 /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
 public static void Grid(
     Problem problem,
     Problem validation,
     Parameter parameters,
     string outputFile,
     out double C,
     out double Gamma)
 {
     Grid(problem, validation, parameters, GetList(MIN_C, MAX_C, C_STEP), GetList(MIN_G, MAX_G, G_STEP), outputFile, out C, out Gamma);
 }
Пример #14
0
        private static void solve_nu_svc(Problem prob, Parameter param,
                        double[] alpha, Solver.SolutionInfo si)
        {
            int i;
            int l = prob.Count;
            double nu = param.Nu;

            sbyte[] y = new sbyte[l];

            for (i = 0; i < l; i++)
                if (prob.Y[i] > 0)
                    y[i] = +1;
                else
                    y[i] = -1;

            double sum_pos = nu * l / 2;
            double sum_neg = nu * l / 2;

            for (i = 0; i < l; i++)
                if (y[i] == +1)
                {
                    alpha[i] = Math.Min(1.0, sum_pos);
                    sum_pos -= alpha[i];
                }
                else
                {
                    alpha[i] = Math.Min(1.0, sum_neg);
                    sum_neg -= alpha[i];
                }

            double[] zeros = new double[l];

            for (i = 0; i < l; i++)
                zeros[i] = 0;

            Solver_NU s = new Solver_NU();
            s.Solve(l, new SVC_Q(prob, param, y), zeros, y, alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
            double r = si.r;

            Procedures.info("C = " + 1 / r + "\n");

            for (i = 0; i < l; i++)
                alpha[i] *= y[i] / r;

            si.rho /= r;
            si.obj /= (r * r);
            si.upper_bound_p = 1 / r;
            si.upper_bound_n = 1 / r;
        }
Пример #15
0
        private static void solve_c_svc(Problem prob, Parameter param,
                        double[] alpha, Solver.SolutionInfo si,
                        double Cp, double Cn)
        {
            int l = prob.Count;
            double[] Minus_ones = new double[l];
            sbyte[] y = new sbyte[l];

            int i;

            for (i = 0; i < l; i++)
            {
                alpha[i] = 0;
                Minus_ones[i] = -1;
                if (prob.Y[i] > 0) y[i] = +1; else y[i] = -1;
            }

            Solver s = new Solver();
            s.Solve(l, new SVC_Q(prob, param, y), Minus_ones, y,
                alpha, Cp, Cn, param.EPS, si, param.Shrinking);

            double sum_alpha = 0;
            for (i = 0; i < l; i++)
                sum_alpha += alpha[i];

            if (Cp == Cn)
                Procedures.info("nu = " + sum_alpha / (Cp * prob.Count) + "\n");

            for (i = 0; i < l; i++)
                alpha[i] *= y[i];
        }
Пример #16
0
        //
        // Interface functions
        //
        public static Model svm_train(Problem prob, Parameter param)
        {
            Model model = new Model();
            model.Parameter = param;

            if (param.SvmType == SvmType.ONE_CLASS ||
               param.SvmType == SvmType.EPSILON_SVR ||
               param.SvmType == SvmType.NU_SVR)
            {
                // regression or one-class-svm
                model.NumberOfClasses = 2;
                model.ClassLabels = null;
                model.NumberOfSVPerClass = null;
                model.PairwiseProbabilityA = null; model.PairwiseProbabilityB = null;
                model.SupportVectorCoefficients = new double[1][];

                if (param.Probability &&
                   (param.SvmType == SvmType.EPSILON_SVR ||
                    param.SvmType == SvmType.NU_SVR))
                {
                    model.PairwiseProbabilityA = new double[1];
                    model.PairwiseProbabilityA[0] = svm_svr_probability(prob, param);
                }

                decision_function f = svm_train_one(prob, param, 0, 0);
                model.Rho = new double[1];
                model.Rho[0] = f.rho;

                int nSV = 0;
                int i;
                for (i = 0; i < prob.Count; i++)
                    if (Math.Abs(f.alpha[i]) > 0) ++nSV;
                model.SupportVectorCount = nSV;
                model.SupportVectors = new Node[nSV][];
                model.SupportVectorCoefficients[0] = new double[nSV];
                int j = 0;
                for (i = 0; i < prob.Count; i++)
                    if (Math.Abs(f.alpha[i]) > 0)
                    {
                        model.SupportVectors[j] = prob.X[i];
                        model.SupportVectorCoefficients[0][j] = f.alpha[i];
                        ++j;
                    }
            }
            else
            {
                // classification
                int l = prob.Count;
                int[] tmp_nr_class = new int[1];
                int[][] tmp_label = new int[1][];
                int[][] tmp_start = new int[1][];
                int[][] tmp_count = new int[1][];
                int[] perm = new int[l];

                // group training data of the same class
                svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
                int nr_class = tmp_nr_class[0];
                int[] label = tmp_label[0];
                int[] start = tmp_start[0];
                int[] count = tmp_count[0];
                Node[][] x = new Node[l][];
                int i;
                for (i = 0; i < l; i++)
                    x[i] = prob.X[perm[i]];

                // calculate weighted C

                double[] weighted_C = new double[nr_class];
                for (i = 0; i < nr_class; i++)
                    weighted_C[i] = param.C;
                foreach (int weightedLabel in param.Weights.Keys)
                {
                    int index = Array.IndexOf<int>(label, weightedLabel);
                    if (index < 0)
                        Console.Error.WriteLine("warning: class label " + weightedLabel + " specified in weight is not found");
                    else weighted_C[index] *= param.Weights[weightedLabel];
                }

                // train k*(k-1)/2 models

                bool[] nonzero = new bool[l];
                for (i = 0; i < l; i++)
                    nonzero[i] = false;
                decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2];

                double[] probA = null, probB = null;
                if (param.Probability)
                {
                    probA = new double[nr_class * (nr_class - 1) / 2];
                    probB = new double[nr_class * (nr_class - 1) / 2];
                }

                int p = 0;
                for (i = 0; i < nr_class; i++)
                    for (int j = i + 1; j < nr_class; j++)
                    {
                        Problem sub_prob = new Problem();
                        int si = start[i], sj = start[j];
                        int ci = count[i], cj = count[j];
                        sub_prob.Count = ci + cj;
                        sub_prob.X = new Node[sub_prob.Count][];
                        sub_prob.Y = new double[sub_prob.Count];
                        int k;
                        for (k = 0; k < ci; k++)
                        {
                            sub_prob.X[k] = x[si + k];
                            sub_prob.Y[k] = +1;
                        }
                        for (k = 0; k < cj; k++)
                        {
                            sub_prob.X[ci + k] = x[sj + k];
                            sub_prob.Y[ci + k] = -1;
                        }

                        if (param.Probability)
                        {
                            double[] probAB = new double[2];
                            svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
                            probA[p] = probAB[0];
                            probB[p] = probAB[1];
                        }

                        f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
                        for (k = 0; k < ci; k++)
                            if (!nonzero[si + k] && Math.Abs(f[p].alpha[k]) > 0)
                                nonzero[si + k] = true;
                        for (k = 0; k < cj; k++)
                            if (!nonzero[sj + k] && Math.Abs(f[p].alpha[ci + k]) > 0)
                                nonzero[sj + k] = true;
                        ++p;
                    }

                // build output

                model.NumberOfClasses = nr_class;

                model.ClassLabels = new int[nr_class];
                for (i = 0; i < nr_class; i++)
                    model.ClassLabels[i] = label[i];

                model.Rho = new double[nr_class * (nr_class - 1) / 2];
                for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    model.Rho[i] = f[i].rho;

                if (param.Probability)
                {
                    model.PairwiseProbabilityA = new double[nr_class * (nr_class - 1) / 2];
                    model.PairwiseProbabilityB = new double[nr_class * (nr_class - 1) / 2];
                    for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
                    {
                        model.PairwiseProbabilityA[i] = probA[i];
                        model.PairwiseProbabilityB[i] = probB[i];
                    }
                }
                else
                {
                    model.PairwiseProbabilityA = null;
                    model.PairwiseProbabilityB = null;
                }

                int nnz = 0;
                int[] nz_count = new int[nr_class];
                model.NumberOfSVPerClass = new int[nr_class];
                for (i = 0; i < nr_class; i++)
                {
                    int nSV = 0;
                    for (int j = 0; j < count[i]; j++)
                        if (nonzero[start[i] + j])
                        {
                            ++nSV;
                            ++nnz;
                        }
                    model.NumberOfSVPerClass[i] = nSV;
                    nz_count[i] = nSV;
                }

                Procedures.info("Total nSV = " + nnz + "\n");

                model.SupportVectorCount = nnz;
                model.SupportVectors = new Node[nnz][];
                p = 0;
                for (i = 0; i < l; i++)
                    if (nonzero[i]) model.SupportVectors[p++] = x[i];

                int[] nz_start = new int[nr_class];
                nz_start[0] = 0;
                for (i = 1; i < nr_class; i++)
                    nz_start[i] = nz_start[i - 1] + nz_count[i - 1];

                model.SupportVectorCoefficients = new double[nr_class - 1][];
                for (i = 0; i < nr_class - 1; i++)
                    model.SupportVectorCoefficients[i] = new double[nnz];

                p = 0;
                for (i = 0; i < nr_class; i++)
                    for (int j = i + 1; j < nr_class; j++)
                    {
                        // classifier (i,j): coefficients with
                        // i are in sv_coef[j-1][nz_start[i]...],
                        // j are in sv_coef[i][nz_start[j]...]

                        int si = start[i];
                        int sj = start[j];
                        int ci = count[i];
                        int cj = count[j];

                        int q = nz_start[i];
                        int k;
                        for (k = 0; k < ci; k++)
                            if (nonzero[si + k])
                                model.SupportVectorCoefficients[j - 1][q++] = f[p].alpha[k];
                        q = nz_start[j];
                        for (k = 0; k < cj; k++)
                            if (nonzero[sj + k])
                                model.SupportVectorCoefficients[i][q++] = f[p].alpha[ci + k];
                        ++p;
                    }
            }
            return model;
        }
Пример #17
0
        public void startSurfTrain()
        {
            List<FileInfo> trainingFiles = new List<FileInfo>(1000);
            DirectoryInfo di = new DirectoryInfo(Constants.base_folder + "train_" + Constants.CIRCLE_TRIANGLE);
            DirectoryInfo[] dirs = di.GetDirectories("*");
            foreach (DirectoryInfo dir in dirs)
            {
                int i = 0;
                FileInfo[] files = dir.GetFiles("*.bmp");
                foreach (FileInfo fi in files)
                {
                    trainingFiles.Add(fi);
                    if (i++ > Constants.MAX_TRAIN_SAMPLE)
                        break;
                }
            }

            double[] class_labels = new double[trainingFiles.Count];
            Node[][] nodes = new Node[trainingFiles.Count][];

            for (int i = 0; i < trainingFiles.Count; i++)
            {
                Bitmap bmp = (Bitmap)Bitmap.FromFile(trainingFiles[i].FullName, false);

                int com_x_sum = 0, com_y_sum = 0, com_x_y_point_count = 0;
                System.Drawing.Imaging.BitmapData image_data = bmp.LockBits(new Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadWrite, bmp.PixelFormat);
                int bpp = 3;
                int nOffset = image_data.Stride - bmp.Width * bpp;
                System.IntPtr Scan0 = image_data.Scan0;
                unsafe
                {
                    byte* p = (byte*)Scan0;
                    for (int y = 0; y < Constants.SIGN_HEIGHT; y++)
                    {
                        for (int x = 0; x < Constants.SIGN_WIDTH; x++, p += bpp)
                        {
                            if (p[2] == 0)
                            {
                                com_x_sum += x;
                                com_y_sum += y;
                                com_x_y_point_count++;
                            }
                        }
                        p += nOffset;
                    }
                }
                bmp.UnlockBits(image_data);
                int com_x = com_x_sum / com_x_y_point_count;
                int com_y = com_y_sum / com_x_y_point_count;

                Node[] nds = new Node[NNTrain.numOfinputs];
                nodes[i] = nds;

                bmp.Tag = trainingFiles[i].Name;
                fillFeatures_SURF(bmp, com_x, com_y, nds);
                class_labels[i] = Double.Parse(trainingFiles[i].Directory.Name);
            }
            Problem problem = new Problem(nodes.Length, class_labels, nodes, NNTrain.numOfinputs + 1);
            // RangeTransform range = Scaling.DetermineRange(problem);
            // problem = Scaling.Scale(problem, range);

            Parameter param = new Parameter();
            param.KernelType = KernelType.POLY;
            // param.KernelType = KernelType.LINEAR;
            // param.KernelType = KernelType.RBF;
            param.SvmType = SvmType.NU_SVC;

            param.C = 2;
            param.Gamma = .5;
            //param.KernelType = KernelType.POLY;

            /* double C, Gamma;
            ParameterSelection.Grid(problem, param, Constants.base_folder + "params_" + type + ".txt", out C, out Gamma);
            param.C = C;
            param.Gamma = Gamma;
            //param.Probability = true;
            */
            Model model = Training.Train(problem, param);

            Stream stream = new FileStream(Constants.base_folder + Constants.NN_SVM_SURF + "_" + Constants.CIRCLE_TRIANGLE + ".dat", FileMode.Create, FileAccess.Write, FileShare.None);
            BinaryFormatter b = new BinaryFormatter();
            b.Serialize(stream, model);
            stream.Close();
        }
Пример #18
0
        ///
        public override void Train()
        {
            int num_users = Feedback.UserMatrix.NumberOfRows;   // DH: should be based on MaxUserID for cold case? TODO: investigate.
            int num_items = Feedback.ItemMatrix.NumberOfRows;

            var svm_features = new List<Node[]>();

            Node[][] svm_features_array = svm_features.ToArray();
            var svm_parameters = new Parameter();
            svm_parameters.SvmType = SvmType.EPSILON_SVR;
            //svm_parameters.SvmType = SvmType.NU_SVR;
            svm_parameters.C     = this.c;
            svm_parameters.Gamma = this.gamma;

            // user-wise training
            this.models = new Model[num_users];
            for (int u = 0; u < num_users; u++)
            {
                var targets = new double[num_items];
                for (int i = 0; i < num_items; i++)
                    targets[i] = Feedback.UserMatrix[u, i] ? 1 : 0;

                Problem svm_problem = new Problem(svm_features.Count, targets, svm_features_array, NumItemAttributes - 1); // TODO check
                models[u] = SVM.Training.Train(svm_problem, svm_parameters);
            }
        }
Пример #19
0
 /// <summary>
 /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
 /// combination which performed best.  Use this method if there is no validation data available, and it will
 /// divide it 5 times to allow 5-fold validation (training on 4/5 and validating on 1/5, 5 times).
 /// </summary>
 /// <param name="problem">The training data</param>
 /// <param name="parameters">The parameters to use when optimizing</param>
 /// <param name="CValues">The set of C values to use</param>
 /// <param name="GammaValues">The set of Gamma values to use</param>
 /// <param name="outputFile">Output file for the parameter results.</param>
 /// <param name="C">The optimal C value will be put into this variable</param>
 /// <param name="Gamma">The optimal Gamma value will be put into this variable</param>
 public static void Grid(
     Problem problem,
     Parameter parameters,
     List<double> CValues,
     List<double> GammaValues,
     string outputFile,
     out double C,
     out double Gamma)
 {
     Grid(problem, parameters, CValues, GammaValues, outputFile, NFOLD, out C, out Gamma);
 }
Пример #20
0
        private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
        {
            Problem problem = new Problem(_X.Count, _Y.ToArray(), _X.ToArray(), 2);
            RangeTransform range = RangeTransform.Compute(problem);
            problem = range.Scale(problem);

            Parameter param = new Parameter();
            param.C = 2;
            param.Gamma = .5;
            Model model = Training.Train(problem, param);

            Model.Write("model.txt", model);

            int rows = ClientSize.Height;
            int columns = ClientSize.Width;
            Bitmap image = new Bitmap(columns, rows);
            int centerR = rows / 2;
            int centerC = columns / 2;
            BitmapData buf = image.LockBits(new Rectangle(0, 0, columns, rows), ImageLockMode.WriteOnly, PixelFormat.Format24bppRgb);
            unsafe
            {
                byte* ptr = (byte*)buf.Scan0;
                int stride = buf.Stride;

                for (int r = 0; r < rows; r++)
                {
                    byte* scan = ptr;
                    for (int c = 0; c < columns; c++)
                    {
                        int x = c - centerC;
                        int y = r - centerR;
                        Node[] test = new Node[] { new Node(1, x), new Node(2, y) };
                        test = range.Transform(test);
                        int assignment = (int)Prediction.Predict(model, test);
                        //int assignment = (int)Prediction.Predict(problem, "predict.txt", model, test);

                        *scan++ = CLASS_FILL[assignment].B;
                        *scan++ = CLASS_FILL[assignment].G;
                        *scan++ = CLASS_FILL[assignment].R;
                    }
                    ptr += stride;
                }
            }
            image.UnlockBits(buf);
            lock (this)
            {
                _canvas = new Bitmap(image);
            }
        }
Пример #21
0
 /// <summary>
 /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
 /// combination which performed best.
 /// </summary>
 /// <param name="problem">The training data</param>
 /// <param name="validation">The validation data</param>
 /// <param name="parameters">The parameters to use when optimizing</param>
 /// <param name="CValues">The C values to use</param>
 /// <param name="GammaValues">The Gamma values to use</param>
 /// <param name="outputFile">The output file for the parameter results</param>
 /// <param name="C">The optimal C value will be placed in this variable</param>
 /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
 public static void Grid(
     Problem problem,
     Problem validation,
     Parameter parameters,
     List<double> CValues,
     List<double> GammaValues,
     string outputFile,
     out double C,
     out double Gamma)
 {
     C = 0;
     Gamma = 0;
     double maxScore = double.MinValue;
     StreamWriter output = null;
     if(outputFile != null)
         output = new StreamWriter(outputFile);
     for (int i = 0; i < CValues.Count; i++)
         for (int j = 0; j < GammaValues.Count; j++)
         {
             parameters.C = CValues[i];
             parameters.Gamma = GammaValues[j];
             Model model = Training.Train(problem, parameters);
             double test = Prediction.Predict(validation, "tmp.txt", model, false);
             Console.Write("{0} {1} {2}", parameters.C, parameters.Gamma, test);
             if(output != null)
                 output.WriteLine("{0} {1} {2}", parameters.C, parameters.Gamma, test);
             if (test > maxScore)
             {
                 C = parameters.C;
                 Gamma = parameters.Gamma;
                 maxScore = test;
                 Console.WriteLine(" New Maximum!");
             }
             else Console.WriteLine();
         }
     if(output != null)
         output.Close();
 }
Пример #22
0
 public SVC_Q(Problem prob, Parameter param, sbyte[] y_)
     : base(prob.Count, prob.X, param)
 {
     y = (sbyte[])y_.Clone();
     cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
     QD = new float[prob.Count];
     for (int i = 0; i < prob.Count; i++)
         QD[i] = (float)KernelFunction(i, i);
 }
Пример #23
0
 public SVR_Q(Problem prob, Parameter param)
     : base(prob.Count, prob.X, param)
 {
     l = prob.Count;
     cache = new Cache(l, (long)(param.CacheSize * (1 << 20)));
     QD = new float[2 * l];
     sign = new sbyte[2 * l];
     index = new int[2 * l];
     for (int k = 0; k < l; k++)
     {
         sign[k] = 1;
         sign[k + l] = -1;
         index[k] = k;
         index[k + l] = k;
         QD[k] = (float)KernelFunction(k, k);
         QD[k + l] = QD[k];
     }
     buffer = new float[2][];
     buffer[0] = new float[2 * l];
     buffer[1] = new float[2 * l];
     next_buffer = 0;
 }
Пример #24
0
        private static void solve_one_class(Problem prob, Parameter param,
                        double[] alpha, Solver.SolutionInfo si)
        {
            int l = prob.Count;
            double[] zeros = new double[l];
            sbyte[] ones = new sbyte[l];
            int i;

            int n = (int)(param.Nu * prob.Count);	// # of alpha's at upper bound

            for (i = 0; i < n; i++)
                alpha[i] = 1;
            if (n < prob.Count)
                alpha[n] = param.Nu * prob.Count - n;
            for (i = n + 1; i < l; i++)
                alpha[i] = 0;

            for (i = 0; i < l; i++)
            {
                zeros[i] = 0;
                ones[i] = 1;
            }

            Solver s = new Solver();
            s.Solve(l, new ONE_CLASS_Q(prob, param), zeros, ones, alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
        }
Пример #25
0
        public static string svm_check_parameter(Problem prob, Parameter param)
        {
            // svm_type

            SvmType svm_type = param.SvmType;

            // kernel_type, degree

            //KernelType kernel_type = param.KernelType;

            if (param.Degree < 0)
                return "degree of polynomial kernel < 0";

            // cache_size,eps,C,nu,p,shrinking

            if (param.CacheSize <= 0)
                return "cache_size <= 0";

            if (param.EPS <= 0)
                return "eps <= 0";

            if (param.Gamma == 0)
                param.Gamma = 1.0 / prob.MaxIndex;

            if (svm_type == SvmType.C_SVC ||
               svm_type == SvmType.EPSILON_SVR ||
               svm_type == SvmType.NU_SVR)
                if (param.C <= 0)
                    return "C <= 0";

            if (svm_type == SvmType.NU_SVC ||
               svm_type == SvmType.ONE_CLASS ||
               svm_type == SvmType.NU_SVR)
                if (param.Nu <= 0 || param.Nu > 1)
                    return "nu <= 0 or nu > 1";

            if (svm_type == SvmType.EPSILON_SVR)
                if (param.P < 0)
                    return "p < 0";

            if (param.Probability &&
               svm_type == SvmType.ONE_CLASS)
                return "one-class SVM probability output not supported yet";

            // check whether nu-svc is feasible

            if (svm_type == SvmType.NU_SVC)
            {
                int l = prob.Count;
                int Max_nr_class = 16;
                int nr_class = 0;
                int[] label = new int[Max_nr_class];
                int[] count = new int[Max_nr_class];

                int i;
                for (i = 0; i < l; i++)
                {
                    int this_label = (int)prob.Y[i];
                    int j;
                    for (j = 0; j < nr_class; j++)
                        if (this_label == label[j])
                        {
                            ++count[j];
                            break;
                        }

                    if (j == nr_class)
                    {
                        if (nr_class == Max_nr_class)
                        {
                            Max_nr_class *= 2;
                            int[] new_data = new int[Max_nr_class];
                            Array.Copy(label, 0, new_data, 0, label.Length);
                            label = new_data;

                            new_data = new int[Max_nr_class];
                            Array.Copy(count, 0, new_data, 0, count.Length);
                            count = new_data;
                        }
                        label[nr_class] = this_label;
                        count[nr_class] = 1;
                        ++nr_class;
                    }
                }

                for (i = 0; i < nr_class; i++)
                {
                    int n1 = count[i];
                    for (int j = i + 1; j < nr_class; j++)
                    {
                        int n2 = count[j];
                        if (param.Nu * (n1 + n2) / 2 > Math.Min(n1, n2))
                            return "specified nu is infeasible";
                    }
                }
            }

            return null;
        }
Пример #26
0
        // Cross-validation decision values for probability estimates
        private static void svm_binary_svc_probability(Problem prob, Parameter param, double Cp, double Cn, double[] probAB)
        {
            int i;
            int nr_fold = 5;
            int[] perm = new int[prob.Count];
            double[] dec_values = new double[prob.Count];

            // random shuffle
            Random rand = new Random();
            for (i = 0; i < prob.Count; i++) perm[i] = i;
            for (i = 0; i < prob.Count; i++)
            {
                int j = i + (int)(rand.NextDouble() * (prob.Count - i));
                do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
            }
            for (i = 0; i < nr_fold; i++)
            {
                int begin = i * prob.Count / nr_fold;
                int end = (i + 1) * prob.Count / nr_fold;
                int j, k;
                Problem subprob = new Problem();

                subprob.Count = prob.Count - (end - begin);
                subprob.X = new Node[subprob.Count][];
                subprob.Y = new double[subprob.Count];

                k = 0;
                for (j = 0; j < begin; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }
                for (j = end; j < prob.Count; j++)
                {
                    subprob.X[k] = prob.X[perm[j]];
                    subprob.Y[k] = prob.Y[perm[j]];
                    ++k;
                }
                int p_count = 0, n_count = 0;
                for (j = 0; j < k; j++)
                    if (subprob.Y[j] > 0)
                        p_count++;
                    else
                        n_count++;

                if (p_count == 0 && n_count == 0)
                    for (j = begin; j < end; j++)
                        dec_values[perm[j]] = 0;
                else if (p_count > 0 && n_count == 0)
                    for (j = begin; j < end; j++)
                        dec_values[perm[j]] = 1;
                else if (p_count == 0 && n_count > 0)
                    for (j = begin; j < end; j++)
                        dec_values[perm[j]] = -1;
                else
                {
                    Parameter subparam = (Parameter)param.Clone();
                    subparam.Probability = false;
                    subparam.C = 1.0;
                    subparam.Weights[1] = Cp;
                    subparam.Weights[-1] = Cn;
                    Model submodel = svm_train(subprob, subparam);
                    for (j = begin; j < end; j++)
                    {
                        double[] dec_value = new double[1];
                        svm_predict_values(submodel, prob.X[perm[j]], dec_value);
                        dec_values[perm[j]] = dec_value[0];
                        // ensure +1 -1 order; reason not using CV subroutine
                        dec_values[perm[j]] *= submodel.ClassLabels[0];
                    }
                }
            }
            sigmoid_train(prob.Count, dec_values, prob.Y, probAB);
        }
Пример #27
0
        private static void solve_epsilon_svr(Problem prob, Parameter param, double[] alpha, Solver.SolutionInfo si)
        {
            int l = prob.Count;
            double[] alpha2 = new double[2 * l];
            double[] linear_term = new double[2 * l];
            sbyte[] y = new sbyte[2 * l];
            int i;

            for (i = 0; i < l; i++)
            {
                alpha2[i] = 0;
                linear_term[i] = param.P - prob.Y[i];
                y[i] = 1;

                alpha2[i + l] = 0;
                linear_term[i + l] = param.P + prob.Y[i];
                y[i + l] = -1;
            }

            Solver s = new Solver();
            s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, param.C, param.C, param.EPS, si, param.Shrinking);

            double sum_alpha = 0;
            for (i = 0; i < l; i++)
            {
                alpha[i] = alpha2[i] - alpha2[i + l];
                sum_alpha += Math.Abs(alpha[i]);
            }
            Procedures.info("nu = " + sum_alpha / (param.C * l) + "\n");
        }
Пример #28
0
        // Return parameter of a Laplace distribution
        private static double svm_svr_probability(Problem prob, Parameter param)
        {
            int i;
            int nr_fold = 5;
            double[] ymv = new double[prob.Count];
            double mae = 0;

            Parameter newparam = (Parameter)param.Clone();
            newparam.Probability = false;
            svm_cross_validation(prob, newparam, nr_fold, ymv);
            for (i = 0; i < prob.Count; i++)
            {
                ymv[i] = prob.Y[i] - ymv[i];
                mae += Math.Abs(ymv[i]);
            }
            mae /= prob.Count;
            double std = Math.Sqrt(2 * mae * mae);
            int count = 0;
            mae = 0;
            for (i = 0; i < prob.Count; i++)
                if (Math.Abs(ymv[i]) > 5 * std)
                    count = count + 1;
                else
                    mae += Math.Abs(ymv[i]);
            mae /= (prob.Count - count);
            Procedures.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\n");
            return mae;
        }
Пример #29
0
        private static void solve_nu_svr(Problem prob, Parameter param,
                        double[] alpha, Solver.SolutionInfo si)
        {
            int l = prob.Count;
            double C = param.C;
            double[] alpha2 = new double[2 * l];
            double[] linear_term = new double[2 * l];
            sbyte[] y = new sbyte[2 * l];
            int i;

            double sum = C * param.Nu * l / 2;
            for (i = 0; i < l; i++)
            {
                alpha2[i] = alpha2[i + l] = Math.Min(sum, C);
                sum -= alpha2[i];

                linear_term[i] = -prob.Y[i];
                y[i] = 1;

                linear_term[i + l] = prob.Y[i];
                y[i + l] = -1;
            }

            Solver_NU s = new Solver_NU();
            s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, C, C, param.EPS, si, param.Shrinking);

            Procedures.info("epsilon = " + (-si.r) + "\n");

            for (i = 0; i < l; i++)
                alpha[i] = alpha2[i] - alpha2[i + l];
        }
Пример #30
0
 /// <summary>
 /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
 /// combination which performed best.  Use this method if validation data isn't available, as it will
 /// divide the training data and train on a portion of it and test on the rest.
 /// </summary>
 /// <param name="problem">The training data</param>
 /// <param name="parameters">The parameters to use when optimizing</param>
 /// <param name="CValues">The set of C values to use</param>
 /// <param name="GammaValues">The set of Gamma values to use</param>
 /// <param name="outputFile">Output file for the parameter results.</param>
 /// <param name="nrfold">The number of times the data should be divided for validation</param>
 /// <param name="C">The optimal C value will be placed in this variable</param>
 /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
 public static void Grid(
     Problem problem,
     Parameter parameters,
     List<double> CValues, 
     List<double> GammaValues, 
     string outputFile,
     int nrfold,
     out double C,
     out double Gamma)
 {
     C = 0;
     Gamma = 0;
     double crossValidation = double.MinValue;
     StreamWriter output = null;
     if(outputFile != null)
         output = new StreamWriter(outputFile);
     for(int i=0; i<CValues.Count; i++)
         for (int j = 0; j < GammaValues.Count; j++)
         {
             parameters.C = CValues[i];
             parameters.Gamma = GammaValues[j];
             double test = Training.PerformCrossValidation(problem, parameters, nrfold);
             if(output != null)
                 output.WriteLine("{0} {1} {2}", parameters.C, parameters.Gamma, test);
             if (test > crossValidation)
             {
                 C = parameters.C;
                 Gamma = parameters.Gamma;
                 crossValidation = test;
             }
         }
     if(output != null)
         output.Close();
 }