Пример #1
0
        /// <summary>
        /// backward action
        /// </summary>
        /// <param name="lr"> lerning rate</param>
        /// <param name="gradTns"> grad error tensor</param>
        /// <returns> true - ok</returns>
        public bool backward(float lr, Tensor gradTns)
        {
            if ((net_ == null) && !createNet())
            {
                return(false);
            }

            return(snBackward(net_, lr, gradTns.size(), gradTns.data()));
        }
Пример #2
0
        /// <summary>
        /// forward action
        /// </summary>
        /// <param name="isLern"> is lerning ?</param>
        /// <param name="inTns"> in tensor</param>
        /// <param name="outTns"> out result tensor</param>
        /// <returns> true - ok</returns>
        public bool forward(bool isLern, Tensor inTns, Tensor outTns)
        {
            if ((net_ == null) && !createNet())
            {
                return(false);
            }

            return(snForward(net_, isLern, inTns.size(), inTns.data(), outTns.size(), outTns.data()));
        }
Пример #3
0
        /// <summary>
        /// set weight of node
        /// </summary>
        /// <param name="name"> name node in architecture of net</param>
        /// <param name="weight"> set weight tensor</param>
        /// <returns> true - ok</returns>
        public bool setWeightNode(string name, Tensor weight)
        {
            if (net_ == null)
            {
                return(false);
            }

            IntPtr cname = Marshal.StringToHGlobalAnsi(name);

            bool ok = snSetWeightNode(net_, cname, weight.size(), weight.data());

            Marshal.FreeHGlobal(cname);

            return(ok);
        }
Пример #4
0
        /// <summary>
        /// cycle forward-backward
        /// </summary>
        /// <param name="lr"> lerning rate</param>
        /// <param name="inTns"> in tensor</param>
        /// <param name="outTns"> out tensor</param>
        /// <param name="targetTns"> target tensor</param>
        /// <param name="outAccurate"> accurate error</param>
        /// <returns> true - ok</returns>
        public bool training(float lr, Tensor inTns, Tensor outTns, Tensor targetTns, ref float outAccurate)
        {
            if ((net_ == null) && !createNet())
            {
                return(false);
            }

            float accurate = 0;

            bool ok = snTraining(net_, lr, inTns.size(), inTns.data(),
                                 outTns.size(), outTns.data(), targetTns.data(), &accurate);

            outAccurate = accurate;

            return(ok);
        }