Dot() приватный Метод

private Dot ( Vector3Width4 &a, Vector3Width4 &b, Vector4 &result ) : void
a Vector3Width4
b Vector3Width4
result Vector4
Результат void
        public void SolveIteration()
        {
            Vector3Width4 linearVelocityA  = new Vector3Width4(ref VelocitiesA0.LinearVelocity, ref VelocitiesA1.LinearVelocity, ref VelocitiesA2.LinearVelocity, ref VelocitiesA3.LinearVelocity);
            Vector3Width4 angularVelocityA = new Vector3Width4(ref VelocitiesA0.AngularVelocity, ref VelocitiesA1.AngularVelocity, ref VelocitiesA2.AngularVelocity, ref VelocitiesA3.AngularVelocity);
            Vector3Width4 linearVelocityB  = new Vector3Width4(ref VelocitiesB0.LinearVelocity, ref VelocitiesB1.LinearVelocity, ref VelocitiesB2.LinearVelocity, ref VelocitiesB3.LinearVelocity);
            Vector3Width4 angularVelocityB = new Vector3Width4(ref VelocitiesB0.AngularVelocity, ref VelocitiesB1.AngularVelocity, ref VelocitiesB2.AngularVelocity, ref VelocitiesB3.AngularVelocity);

            Vector4 linearA, angularA, linearB, angularB;

            Vector3Width4.Dot(ref LinearJacobianA, ref linearVelocityA, out linearA);
            Vector3Width4.Dot(ref AngularJacobianA, ref angularVelocityA, out angularA);
            Vector3Width4.Dot(ref LinearJacobianB, ref linearVelocityB, out linearB);
            Vector3Width4.Dot(ref AngularJacobianB, ref angularVelocityB, out angularB);
            var lambda = EffectiveMass * (linearA + angularA + linearB + angularB + PenetrationBias - AccumulatedImpulse * Softness);

            var previous = AccumulatedImpulse;

            AccumulatedImpulse = Vector4.Max(Vector4.Zero, AccumulatedImpulse + lambda);
            lambda             = AccumulatedImpulse - previous;

            ApplyImpulse(ref lambda, ref linearVelocityA, ref angularVelocityA, ref linearVelocityB, ref angularVelocityB);

            Vector3Width4.Transpose(ref linearVelocityA, out VelocitiesA0.LinearVelocity, out VelocitiesA1.LinearVelocity, out VelocitiesA2.LinearVelocity, out VelocitiesA3.LinearVelocity);
            Vector3Width4.Transpose(ref linearVelocityB, out VelocitiesB0.LinearVelocity, out VelocitiesB1.LinearVelocity, out VelocitiesB2.LinearVelocity, out VelocitiesB3.LinearVelocity);
            Vector3Width4.Transpose(ref angularVelocityA, out VelocitiesA0.AngularVelocity, out VelocitiesA1.AngularVelocity, out VelocitiesA2.AngularVelocity, out VelocitiesA3.AngularVelocity);
            Vector3Width4.Transpose(ref angularVelocityB, out VelocitiesB0.AngularVelocity, out VelocitiesB1.AngularVelocity, out VelocitiesB2.AngularVelocity, out VelocitiesB3.AngularVelocity);
        }
        public void Prestep(float inverseDt)
        {
            //C = dot(Pa - Pb, N) > 0
            //Jacobians:
            //LinearA: N
            //AngularA: cross(OffsetPa, N)
            //LinearB: -N
            //AngularB: -cross(OffsetPb, N)

            //var positionA = new Vector3Width4();
            //var positionB = new Vector3Width4();

            //Given that we're collecting position, inverse mass, and inertia all at once, it makes no sense to store position separately from inversemass and inertia.
            //Since you should not expect the 4 involved bodies to be in memory *together*, the best you can do is to ensure that the set of values are together.
            //Otherwise you're multiplying cache misses for no reason!
            var InverseMassA = new Vector4(BodyA0.InverseMass, BodyA1.InverseMass, BodyA2.InverseMass, BodyA3.InverseMass);
            var InverseMassB = new Vector4(BodyB0.InverseMass, BodyB1.InverseMass, BodyB2.InverseMass, BodyB3.InverseMass);

            var InverseInertiaTensorA = new Matrix3x3Width4(ref BodyA0.InertiaTensorInverse, ref BodyA1.InertiaTensorInverse, ref BodyA2.InertiaTensorInverse, ref BodyA3.InertiaTensorInverse);
            var InverseInertiaTensorB = new Matrix3x3Width4(ref BodyB0.InertiaTensorInverse, ref BodyB1.InertiaTensorInverse, ref BodyB2.InertiaTensorInverse, ref BodyB3.InertiaTensorInverse);

            Vector3Width4 positionA = new Vector3Width4(ref BodyA0.Position, ref BodyA1.Position, ref BodyA2.Position, ref BodyA3.Position);
            Vector3Width4 positionB = new Vector3Width4(ref BodyA0.Position, ref BodyB1.Position, ref BodyB2.Position, ref BodyB3.Position);


            LinearJacobianA = ContactNormal;
            Vector3Width4.Negate(ref ContactNormal, out LinearJacobianB);

            Vector3Width4 offsetA, offsetB;

            Vector3Width4.Subtract(ref ContactPosition, ref positionA, out offsetA);
            Vector3Width4.Subtract(ref ContactPosition, ref positionB, out offsetB);

            Vector3Width4.Cross(ref offsetA, ref ContactNormal, out AngularJacobianA);
            Vector3Width4.Cross(ref ContactNormal, ref offsetB, out AngularJacobianB);// note negation->parameter reverse


            //Allow velocity that closes a gap, and apply penetration correction against positive depth.
            //Bounciness not yet included.
            PenetrationBias = ContactPenetration * inverseDt;
            PenetrationBias = -Vector4.Min(Vector4.Min(PenetrationBias, PenetrationBias * 0.2f), new Vector4(0.2f));


            //The inertia tensor is in world space, so no jacobian transformation is required.
            Vector3Width4.Multiply(ref LinearJacobianA, ref InverseMassA, out LinearJacobianITA);
            Vector3Width4.Multiply(ref LinearJacobianB, ref InverseMassB, out LinearJacobianITB);
            Matrix3x3Width4.Transform(ref AngularJacobianA, ref InverseInertiaTensorA, out AngularJacobianITA);
            Matrix3x3Width4.Transform(ref AngularJacobianB, ref InverseInertiaTensorB, out AngularJacobianITB);
            Vector4 angularContributionA, angularContributionB;

            Vector3Width4.Dot(ref AngularJacobianITA, ref AngularJacobianITA, out angularContributionA);
            Vector3Width4.Dot(ref AngularJacobianITB, ref AngularJacobianITB, out angularContributionB);
            var inverseEffectiveMass = InverseMassA + InverseMassB + angularContributionA + angularContributionB;

            Vector4 CollisionSoftness = new Vector4(5);

            Softness      = CollisionSoftness * inverseEffectiveMass * inverseDt;
            EffectiveMass = Vector4.One / (Softness + inverseEffectiveMass);
        }
        public void Prestep(float inverseDt,
                            ref Vector4 inverseMassA, ref Vector4 inverseMassB,
                            ref Matrix3x3Width4 inverseInertiaTensorA, ref Matrix3x3Width4 inverseInertiaTensorB,
                            ref Vector3Width4 positionA, ref Vector3Width4 positionB)
        {
            //C = dot(Pa - Pb, N) > 0
            //Jacobians:
            //LinearA: N
            //AngularA: cross(OffsetPa, N)
            //LinearB: -N
            //AngularB: -cross(OffsetPb, N)

            //var positionA = new Vector3Width4();
            //var positionB = new Vector3Width4();

            LinearJacobianA = ContactNormal;
            Vector3Width4.Negate(ref ContactNormal, out LinearJacobianB);

            Vector3Width4 offsetA, offsetB;

            Vector3Width4.Subtract(ref ContactPosition, ref positionA, out offsetA);
            Vector3Width4.Subtract(ref ContactPosition, ref positionB, out offsetB);

            Vector3Width4.Cross(ref offsetA, ref ContactNormal, out AngularJacobianA);
            Vector3Width4.Cross(ref ContactNormal, ref offsetB, out AngularJacobianB);// note negation->parameter reverse


            //Allow velocity that closes a gap, and apply penetration correction against positive depth.
            //Bounciness not yet included.
            PenetrationBias = ContactPenetration * inverseDt;
            PenetrationBias = -Vector4.Min(Vector4.Min(PenetrationBias, PenetrationBias * 0.2f), new Vector4(0.2f));


            //The inertia tensor is in world space, so no jacobian transformation is required.
            Vector3Width4.Multiply(ref LinearJacobianA, ref inverseMassA, out LinearJacobianITA);
            Vector3Width4.Multiply(ref LinearJacobianB, ref inverseMassB, out LinearJacobianITB);
            Matrix3x3Width4.Transform(ref AngularJacobianA, ref inverseInertiaTensorA, out AngularJacobianITA);
            Matrix3x3Width4.Transform(ref AngularJacobianB, ref inverseInertiaTensorB, out AngularJacobianITB);
            Vector4 angularContributionA, angularContributionB;

            Vector3Width4.Dot(ref AngularJacobianITA, ref AngularJacobianITA, out angularContributionA);
            Vector3Width4.Dot(ref AngularJacobianITB, ref AngularJacobianITB, out angularContributionB);
            var inverseEffectiveMass = inverseMassA + inverseMassB + angularContributionA + angularContributionB;

            Vector4 CollisionSoftness = new Vector4(5);

            Softness      = CollisionSoftness * inverseEffectiveMass * inverseDt;
            EffectiveMass = Vector4.One / (Softness + inverseEffectiveMass);
        }
        public void SolveIteration()
        {
            Vector3Width4 velocities = new Vector3Width4(ref ConnectionA.LinearVelocity, ref ConnectionA.AngularVelocity, ref ConnectionB.LinearVelocity, ref ConnectionB.AngularVelocity);

            Vector4 velocityContributions;

            Vector3Width4.Dot(ref velocities, ref Jacobians, out velocityContributions);

            var lambda = EffectiveMass * (
                velocityContributions.X + velocityContributions.Y + velocityContributions.Z + velocityContributions.W +
                PenetrationBias - AccumulatedImpulse * Softness);

            var previous = AccumulatedImpulse;

            AccumulatedImpulse = Math.Max(0, AccumulatedImpulse + lambda);
            lambda             = AccumulatedImpulse - previous;

            ApplyImpulse(lambda, ref velocities);

            Vector3Width4.Transpose(ref velocities, out ConnectionA.LinearVelocity, out ConnectionA.AngularVelocity, out ConnectionB.LinearVelocity, out ConnectionB.AngularVelocity);
        }