SetE() приватный Метод

private SetE ( int new_value ) : void
new_value int
Результат void
Пример #1
0
		internal static int GetCachedPower(int e, int alpha, int gamma, DiyFp c_mk)
		{
			int kQ = DiyFp.kSignificandSize;
			double k = System.Math.Ceiling((alpha - e + kQ - 1) * kD_1_LOG2_10);
			int index = (GRISU_CACHE_OFFSET + (int)k - 1) / CACHED_POWERS_SPACING + 1;
			CachedPowers.CachedPower cachedPower = CACHED_POWERS[index];
			c_mk.SetF(cachedPower.significand);
			c_mk.SetE(cachedPower.binaryExponent);
			System.Diagnostics.Debug.Assert(((alpha <= c_mk.E() + e) && (c_mk.E() + e <= gamma)));
			return cachedPower.decimalExponent;
		}
Пример #2
0
		// Returns the two boundaries of first argument.
		// The bigger boundary (m_plus) is normalized. The lower boundary has the same
		// exponent as m_plus.
		internal static void NormalizedBoundaries(long d64, DiyFp m_minus, DiyFp m_plus)
		{
			DiyFp v = AsDiyFp(d64);
			bool significand_is_zero = (v.F() == kHiddenBit);
			m_plus.SetF((v.F() << 1) + 1);
			m_plus.SetE(v.E() - 1);
			m_plus.Normalize();
			if (significand_is_zero && v.E() != kDenormalExponent)
			{
				// The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
				// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
				// at a distance of 1e8.
				// The only exception is for the smallest normal: the largest denormal is
				// at the same distance as its successor.
				// Note: denormals have the same exponent as the smallest normals.
				m_minus.SetF((v.F() << 2) - 1);
				m_minus.SetE(v.E() - 2);
			}
			else
			{
				m_minus.SetF((v.F() << 1) - 1);
				m_minus.SetE(v.E() - 1);
			}
			m_minus.SetF(m_minus.F() << (m_minus.E() - m_plus.E()));
			m_minus.SetE(m_plus.E());
		}
Пример #3
0
		// Generates the digits of input number w.
		// w is a floating-point number (DiyFp), consisting of a significand and an
		// exponent. Its exponent is bounded by minimal_target_exponent and
		// maximal_target_exponent.
		//       Hence -60 <= w.e() <= -32.
		//
		// Returns false if it fails, in which case the generated digits in the buffer
		// should not be used.
		// Preconditions:
		//  * low, w and high are correct up to 1 ulp (unit in the last place). That
		//    is, their error must be less that a unit of their last digits.
		//  * low.e() == w.e() == high.e()
		//  * low < w < high, and taking into account their error: low~ <= high~
		//  * minimal_target_exponent <= w.e() <= maximal_target_exponent
		// Postconditions: returns false if procedure fails.
		//   otherwise:
		//     * buffer is not null-terminated, but len contains the number of digits.
		//     * buffer contains the shortest possible decimal digit-sequence
		//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
		//       correct values of low and high (without their error).
		//     * if more than one decimal representation gives the minimal number of
		//       decimal digits then the one closest to W (where W is the correct value
		//       of w) is chosen.
		// Remark: this procedure takes into account the imprecision of its input
		//   numbers. If the precision is not enough to guarantee all the postconditions
		//   then false is returned. This usually happens rarely (~0.5%).
		//
		// Say, for the sake of example, that
		//   w.e() == -48, and w.f() == 0x1234567890abcdef
		// w's value can be computed by w.f() * 2^w.e()
		// We can obtain w's integral digits by simply shifting w.f() by -w.e().
		//  -> w's integral part is 0x1234
		//  w's fractional part is therefore 0x567890abcdef.
		// Printing w's integral part is easy (simply print 0x1234 in decimal).
		// In order to print its fraction we repeatedly multiply the fraction by 10 and
		// get each digit. Example the first digit after the point would be computed by
		//   (0x567890abcdef * 10) >> 48. -> 3
		// The whole thing becomes slightly more complicated because we want to stop
		// once we have enough digits. That is, once the digits inside the buffer
		// represent 'w' we can stop. Everything inside the interval low - high
		// represents w. However we have to pay attention to low, high and w's
		// imprecision.
		internal static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, FastDtoaBuilder buffer, int mk)
		{
			System.Diagnostics.Debug.Assert((low.E() == w.E() && w.E() == high.E()));
			System.Diagnostics.Debug.Assert(Uint64_lte(low.F() + 1, high.F() - 1));
			System.Diagnostics.Debug.Assert((minimal_target_exponent <= w.E() && w.E() <= maximal_target_exponent));
			// low, w and high are imprecise, but by less than one ulp (unit in the last
			// place).
			// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
			// the new numbers are outside of the interval we want the final
			// representation to lie in.
			// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
			// numbers that are certain to lie in the interval. We will use this fact
			// later on.
			// We will now start by generating the digits within the uncertain
			// interval. Later we will weed out representations that lie outside the safe
			// interval and thus _might_ lie outside the correct interval.
			long unit = 1;
			DiyFp too_low = new DiyFp(low.F() - unit, low.E());
			DiyFp too_high = new DiyFp(high.F() + unit, high.E());
			// too_low and too_high are guaranteed to lie outside the interval we want the
			// generated number in.
			DiyFp unsafe_interval = DiyFp.Minus(too_high, too_low);
			// We now cut the input number into two parts: the integral digits and the
			// fractionals. We will not write any decimal separator though, but adapt
			// kappa instead.
			// Reminder: we are currently computing the digits (stored inside the buffer)
			// such that:   too_low < buffer * 10^kappa < too_high
			// We use too_high for the digit_generation and stop as soon as possible.
			// If we stop early we effectively round down.
			DiyFp one = new DiyFp(1l << -w.E(), w.E());
			// Division by one is a shift.
			int integrals = (int)(((long)(((ulong)too_high.F()) >> -one.E())) & unchecked((long)(0xffffffffL)));
			// Modulo by one is an and.
			long fractionals = too_high.F() & (one.F() - 1);
			long result = BiggestPowerTen(integrals, DiyFp.kSignificandSize - (-one.E()));
			int divider = (int)(((long)(((ulong)result) >> 32)) & unchecked((long)(0xffffffffL)));
			int divider_exponent = (int)(result & unchecked((long)(0xffffffffL)));
			int kappa = divider_exponent + 1;
			// Loop invariant: buffer = too_high / 10^kappa  (integer division)
			// The invariant holds for the first iteration: kappa has been initialized
			// with the divider exponent + 1. And the divider is the biggest power of ten
			// that is smaller than integrals.
			while (kappa > 0)
			{
				int digit = integrals / divider;
				buffer.Append((char)('0' + digit));
				integrals %= divider;
				kappa--;
				// Note that kappa now equals the exponent of the divider and that the
				// invariant thus holds again.
				long rest = ((long)integrals << -one.E()) + fractionals;
				// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
				// Reminder: unsafe_interval.e() == one.e()
				if (rest < unsafe_interval.F())
				{
					// Rounding down (by not emitting the remaining digits) yields a number
					// that lies within the unsafe interval.
					buffer.point = buffer.end - mk + kappa;
					return RoundWeed(buffer, DiyFp.Minus(too_high, w).F(), unsafe_interval.F(), rest, (long)divider << -one.E(), unit);
				}
				divider /= 10;
			}
			// The integrals have been generated. We are at the point of the decimal
			// separator. In the following loop we simply multiply the remaining digits by
			// 10 and divide by one. We just need to pay attention to multiply associated
			// data (like the interval or 'unit'), too.
			// Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
			// increase its (imaginary) exponent. At the same time we decrease the
			// divider's (one's) exponent and shift its significand.
			// Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
			//      fractionals.f *= 10;
			//      fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
			//      one.f >>= 1; one.e++;                 // value remains unchanged.
			//      and we have again fractionals.e == one.e which allows us to divide
			//           fractionals.f() by one.f()
			// We simply combine the *= 10 and the >>= 1.
			while (true)
			{
				fractionals *= 5;
				unit *= 5;
				unsafe_interval.SetF(unsafe_interval.F() * 5);
				unsafe_interval.SetE(unsafe_interval.E() + 1);
				// Will be optimized out.
				one.SetF((long)(((ulong)one.F()) >> 1));
				one.SetE(one.E() + 1);
				// Integer division by one.
				int digit = (int)(((long)(((ulong)fractionals) >> -one.E())) & unchecked((long)(0xffffffffL)));
				buffer.Append((char)('0' + digit));
				fractionals &= one.F() - 1;
				// Modulo by one.
				kappa--;
				if (fractionals < unsafe_interval.F())
				{
					buffer.point = buffer.end - mk + kappa;
					return RoundWeed(buffer, DiyFp.Minus(too_high, w).F() * unit, unsafe_interval.F(), fractionals, one.F(), unit);
				}
			}
		}