public string html_HtmlDoc_page1(string jusik_code, ref stock_[] stock_10days) { //Initial Global_days GG = new Global_days(); stock_[] stock_page1 = new stock_[GG._days]; string put = ""; stock_page1 = stock_10days; //ref //Method Set MethodClass call_method = new MethodClass(); var html = @"https://finance.naver.com/item/sise_day.nhn?code="; var test = jusik_code + "&page=1"; html += test; // 주식 정보 종합 HtmlAgilityPack.HtmlWeb web = new HtmlAgilityPack.HtmlWeb(); var HtmlDoc = web.Load(html); //html_addr html_Addr = new html_addr(); //html_Addr.html_HtmlDoc(HtmlDoc); int carry = 0; HtmlAgilityPack.HtmlNodeCollection[] htmlNodes = new HtmlAgilityPack.HtmlNodeCollection[GG.divide_days]; //3,4,5,6,7 //11,12,13,14,15 for (int i = 0; i < GG.divide_days; i++) { int jump = 3; if (i >= 5) { // ex) i=5 + jump -> 11 jump = 6; } jump += i; htmlNodes[i] = HtmlDoc.DocumentNode.SelectNodes("//body/table[1]/tr[" + jump + "]"); if (htmlNodes[i] == null) { return(i + jump + "err"); } //td1 날짜, td2 종가, td3 전일비, td4 시가, td5 고가, td6 저가 td7 거래량 foreach (var node in htmlNodes[i]) { if (node != null) { var data_date = node.SelectSingleNode("td[1]").InnerText; var data_closing_price = node.SelectSingleNode("td[2]").InnerText; var data_market_price = node.SelectSingleNode("td[4]").InnerText; var data_high_price = node.SelectSingleNode("td[5]").InnerText; var data_low_price = node.SelectSingleNode("td[6]").InnerText; var data_transaction_volume = node.SelectSingleNode("td[7]").InnerText; put += "Date:" + data_date + " 종가:" + data_closing_price + " 시가:" + data_market_price + " 고가:" + data_high_price + " 저가:" + data_low_price + " 거래량:" + data_transaction_volume + Environment.NewLine; //stock[carry].s_date = call_method.CnvStringToInt_4(data_date); stock_page1[carry].s_date = call_method.CnvStringToInt_4(data_date); stock_page1[carry].s_dcp_int = call_method.CnvStringToInt(data_closing_price); stock_page1[carry].s_dtv_int = call_method.CnvStringToInt(data_transaction_volume); stock_page1[carry].s_dmp_int = call_method.CnvStringToInt(data_market_price); stock_page1[carry].s_dhp_int = call_method.CnvStringToInt(data_high_price); stock_page1[carry].s_dlp_int = call_method.CnvStringToInt(data_low_price); carry++; } } } return(put); }
} //BP_START #endif public double BP_START_STOCK(ref stock_[] bp_stock) { //Initial Global_days GG = new Global_days(); stock_[] stock_bp = new stock_[GG._days]; stock_bp = bp_stock; //ref //Bias, Hidden Neuron Weight Set for (int i = 0; i < Number_Neurons; i++) { Bias_Weight[i] = ran.NextDouble(); } for (int i = 0; i < Input_Neuron * Hd_L_Number; i++) { Weight_Input_Layer[i] = ran.NextDouble(); } for (int i = 0; i < Number_Layer; i++) { for (int j = 0; j < Hd_L_Number * Hd_L_Number; j++) { Weight_Layer[i, j] = ran.NextDouble(); } } for (int i = 0; i < Output_Neuron * Hd_L_Number; i++) { Weight_Output_Layer[i] = ran.NextDouble(); } //max count get for (int i = 0; i < Get_days; i++) { if (max_count < stock_bp[i].s_dhp_int) { max_count = stock_bp[i].s_dhp_int; } } do { max_count = (max_count / 10); digits++; } while (max_count > 0); for (int i = 0; i < Get_days; i++) { if (max_count_tv < stock_bp[i].s_dtv_int) { max_count_tv = stock_bp[i].s_dtv_int; } } do { max_count_tv = (max_count_tv / 10); digits_tv++; } while (max_count_tv > 0); //Input Set for (int i = 0; i < Get_days; i++) { Input[i + 0] = stock_bp[i].s_dmp_int; Input[i + 1] = stock_bp[i].s_dhp_int; Input[i + 2] = stock_bp[i].s_dlp_int; Input[i + 3] = stock_bp[i].s_dtv_int; Input[i + 0] /= Math.Pow(10, digits); Input[i + 1] /= Math.Pow(10, digits); Input[i + 2] /= Math.Pow(10, digits); Input[i + 3] /= Math.Pow(10, digits_tv); } for (int i = 0; i < Get_days; i++) { for (int j = 0; j < Output_Neuron; j++) { Target_t[i, j] = stock_bp[i].s_dcp_int; Target_t[i, j] /= Math.Pow(10, digits); } } //Output Set //BPA Start while (Epoch-- > 0) { /*Input - Hidden Layer[0] 사이 Sum,Sigmoid,Delta */ for (int i = 0; i < Input_Neuron; i++) { for (int j = 0; j < Input_Neuron; j++) { Sum[i] += Input[j + bnc * Input_Neuron] * Weight_Input_Layer[inc]; ++inc; } Sum[i] += (Bias * Bias_Weight[i]); Sigmoid[i] = (1.0 / (1.0 + Math.Exp(-Sum[i]))); } inc = 0; /*Hidden Layer 사이의 Sum, Sigmoid*/ for (int i = Number_Layer - 1; i > 0; i--) { k += Hd_L_Number; //ex) 20,21,22,23,24 / 15,16,17,18,19 / ... for (int j = New_Lable - (Hd_L_Number + jump); j < New_Lable - jump; j++) { //ex) 25-(5+5*k) -> n=20-5k; n < 25-5k; n++ -> 20,21,22,23,24 / 15,16,17,18,19 / .... for (int n = New_Lable - (Hd_L_Number + k); n < New_Lable - k; n++) { Sum[j] += (Sigmoid[n] * Weight_Layer[i - 1, inc]); ++inc; } Sum[j] += (Bias * Bias_Weight[j]); Sigmoid[j] = (1.0 / (1.0 + Math.Exp(-Sum[j]))); } inc = 0; jump += Hd_L_Number; } jump = 0; k = 0; /* Output Layer와 연결된 Hidden Layer이용하여 Output Sum,Sigmoid */ for (int i = 0; i < Output_Neuron; ++i) { for (int j = Lable; j < New_Lable; j++) { Sum_Output[i] += (Sigmoid[j] * Weight_Output_Layer[inc]); inc++; } Sum_Output[i] += (Bias * Bias_Weight[New_Lable + i]); Sigmoid_Output[i] = (1.0 / (1.0 + Math.Exp(-Sum_Output[i]))); Delta_Output[i] = (Sigmoid_Output[i] * (1 - Sigmoid_Output[i])) * (Target_t[bnc, i] - Sigmoid_Output[i]); /*Target 값 설정 주의*/ for (int j = Lable; j < New_Lable; ++j) { Delta[j] += (Sigmoid[j] * (1 - Sigmoid[j]) * Weight_Output_Layer[carry] * Delta_Output[i]); ++carry; } } inc = 0; carry = 0; /*Hidden Layer들 사이의 Delta*/ for (int i = Number_Layer - 1; i > 0; --i) { carry += Hd_L_Number; //ex) 30 - (10+jump) < 25 - jump -> 1. 20 < 25 2. 15 < 20 3.10 < 15 for (int z = New_Lable - (2 * Hd_L_Number + jump); z < New_Lable - Hd_L_Number - jump; z++) { //ex) 30 - carry < 30 - jump 1. 25 < 30 2. 20 < 25 ... for (int j = (New_Lable - carry); j < New_Lable - jump; j++) { Delta[z] += (Sigmoid[z] * (1 - Sigmoid[z])) * Delta[j] * Weight_Layer[i - 1, inc + small_jump]; small_jump += Hd_L_Number; } small_jump = 0; jump += Hd_L_Number; inc++; } } carry = 0; inc = 0; jump = 0; /*Weight 갱신*/ //Bias 부분 for (int i = 0; i < New_Lable; ++i) { Bias_Weight[i] = (L_N_G * Delta[i] * Bias) + Bias_Weight[i]; } for (int i = New_Lable; i < Number_Neurons; ++i) { Bias_Weight[i] = (L_N_G * Delta_Output[i - New_Lable] * Bias) + Bias_Weight[i]; } //Input <---> Hidden Layer 1층 부분 //ex) 5 * 5 -> 25 for (int i = 0; i < (Input_Neuron * Hd_L_Number); ++i) { carry = i % Input_Neuron; //Input 2개 일때 (l--> 0 1 0 1) if (i > 0) { //i--> 0 1 2 3 4 5 6 7 => l --> 0 1 0 1 0 1 0 1 if (carry == 0) { ++k; //K--> 0 0 1 1 2 2 3 3 } } Weight_Input_Layer[i] = (L_N_G * Delta[k] * Input[carry + bnc * Input_Neuron]) + Weight_Input_Layer[i]; } carry = 0; k = 0; /*Hidden Layer 사이의 Weight 갱신*/ for (int i = (Number_Layer - 1); i > 0; --i) { carry += Hd_L_Number; //ex) 1. 25 - 5 - 5 < 25 - 5 2. 25 - 10 -5 < 25 - 10 for (int j = (New_Lable - carry - Hd_L_Number); j < (New_Lable - carry); ++j) { //ex) 1. 25 - 5 < 25 - 0 2. 25-10 < 25-5 ... for (int k = (New_Lable - carry); k < (New_Lable - jump); ++k) { Weight_Layer[i - 1, inc] = (L_N_G * Delta[k] * Sigmoid[j]) + Weight_Layer[i - 1, inc]; ++inc; } } jump += Hidden_Layer[i]; inc = 0; } inc = 0; jump = 0; carry = 0; //Hidden Layer(마지막 층) <---> Output Layer //ex) 1. 0 < 5*5 for (int i = 0; i < (Output_Neuron * Hd_L_Number); ++i) { carry = i % Hd_L_Number; // 0 1 2 3 4 0 1 2 3 4 if (i > 0 && ((i % Hd_L_Number) == 0)) { ++k; //ex) i: 5->0 10->0 15->0 20->0 } Weight_Output_Layer[i] = (L_N_G * Delta_Output[k] * Sigmoid[carry + Lable]) + Weight_Output_Layer[i]; } carry = 0; k = 0; /*Delta += 사용하였기 때문에 초기화 해주어야 함*/ for (int i = 0; i < New_Lable; ++i) { Delta[i] = 0; } for (int i = 0; i < Output_Neuron; ++i) { Delta_Output[i] = 0; } /*Sum += 문법 초기화*/ for (int i = 0; i < New_Lable; ++i) { Sum[i] = 0; } for (int i = 0; i < Output_Neuron; ++i) { Sum_Output[i] = 0; } /*최종 Error 값 구하는 곳*/ //Mean Square Error 적용해보기 //RMSE = Root *( (1.0 / n) * Sigma(i) * pow((Target_Vector(i) - Output(i)) , 2) ) //루트 --> sqrt(실수) , 제곱 --> pow(a , 2) for (int i = 0; i < Output_Neuron; ++i) { Error[i] = (Target_t[bnc, i] - Sigmoid_Output[i]); RMSE += ((1.0 / Output_Neuron) * Math.Pow(Error[i], 2)); Error_add[i] += Math.Abs(Error[i]); } RMSE = Math.Sqrt(RMSE); ++bnc; ++Iteration; if (bnc == Get_days) { bnc = 0; } if ((Iteration % Get_days) == 0) { RMSE = 0; for (int i = 0; i < Output_Neuron; ++i) { Error_Result[i] = (Error_add[i] / Get_days); Error_add[i] = 0; } } }//while(Epoch-- > 0) //TEST OUTPUT(TEXT Result) /*Test할 Input 값 입력*/ bnc = 0; #if false for (int i = 0; i < Input_Neuron; i++) { for (int j = 0; j < Get_days; j++) { //ex) 0,4,8,12,16 || 0 4 8 12 16 //ex) 1,5,9,13,17 || 1 5 9 13 T_Input[i] += Input[j * Input_Neuron + i]; } T_Input[i] = T_Input[i] / Get_days; } #endif //1.시가 2.고가 3.저가 4.거래량 5.종가(타겟) T_Input[0] = stock_bp[0].s_dmp_int; T_Input[1] = stock_bp[0].s_dhp_int; T_Input[2] = stock_bp[0].s_dlp_int; T_Input[3] = stock_bp[0].s_dtv_int; T_Input[0] /= Math.Pow(10, digits); T_Input[1] /= Math.Pow(10, digits); T_Input[2] /= Math.Pow(10, digits); T_Input[3] /= Math.Pow(10, digits_tv); /*Input - Hidden Layer[0] 사이 Sum,Sigmoid,Delta */ for (int i = 0; i < Hd_L_Number; ++i) { for (int j = 0; j < Input_Neuron; ++j) { T_Sum[i] += (T_Input[j + bnc * 2] * Weight_Input_Layer[inc]); ++inc; } T_Sum[i] += (Bias * Bias_Weight[i]); T_Sigmoid[i] = (1.0 / (1.0 + Math.Exp(-T_Sum[i]))); } inc = 0; /*Hidden Layer들 사이의 Sum, Sigmoid*/ for (int i = 0; i < (Number_Layer - 1); ++i) { carry += Hd_L_Number; for (int j = carry; j < carry + Hd_L_Number; ++j) { for (int k = jump; k < carry; ++k) { T_Sum[j] += (T_Sigmoid[k] * Weight_Layer[i, inc]); ++inc; } T_Sum[j] += (Bias * Bias_Weight[j]); T_Sigmoid[j] = (1.0 / (1.0 + Math.Exp(-T_Sum[j]))); } inc = 0; jump += Hd_L_Number; } jump = 0; carry = 0; /* Output Layer와 연결된 Hidden Layer이용하여 Output Sum,Sigmoid */ for (int i = 0; i < Output_Neuron; ++i) { for (int j = Lable; j < New_Lable; ++j) { T_Output_Sum[i] += (T_Sigmoid[j] * Weight_Output_Layer[inc]); ++inc; } T_Output_Sum[i] += (Bias * Bias_Weight[New_Lable + i]); T_Output_Sigmoid[i] = (1.0 / (1.0 + Math.Exp(-T_Output_Sum[i]))); } inc = 0; return(Math.Abs(T_Output_Sigmoid[0]) * Math.Pow(10, digits)); } //BP_START
public stock_ html_get_event(stock_ get) { return(get); }