Пример #1
0
        public double getZ(model m, dataSeq x, bool mask)
        {
            belief bel = new belief(x.Count, m.NTag);

            getBeliefs(bel, m, x, mask);
            return(bel.Z);
        }
Пример #2
0
        public Lattice(model m, inference inf, dataSeq x)
        {
            _w = x.Count;
            _h = m.NTag;

            _logBel = new belief(_w, _h);

            List <dMatrix>        YYlist = new List <dMatrix>();
            List <List <double> > Ylist  = new List <List <double> >();

            inf.getYYandY(m, x, YYlist, Ylist);

            for (int i = 0; i < _w; i++)
            {
                _logBel.belState[i] = new List <double>(Ylist[i]);

                if (i > 0)
                {
                    _logBel.belEdge[i] = new dMatrix(YYlist[i]);
                }
            }

            _heuListList = new List <List <double> >();
            for (int i = 0; i < _w; i++)
            {
                _heuListList.Add(new List <double>(new double[_h]));
            }

            Viterbi _bwdViterbi = new Viterbi(_w, _h);

            for (int i = 0; i < _w; i++)
            {
                _bwdViterbi.setScores(i, Ylist[i], YYlist[i]);
            }
            List <int> tags = new List <int>();

            _bwdViterbi.runViterbi(ref tags);
            //update the viterbiHeuristicMap
            for (int i = 0; i < _w; i++)
            {
                for (int j = 0; j < _h; j++)
                {
                    double h = _bwdViterbi.getPathScore(i, j);
                    setHeuMap(i, j, h);
                }
            }

            //get zGold
            ZGold = 0;
            for (int i = 0; i < x.Count; i++)
            {
                int s = x.getTags(i);
                ZGold += Ylist[i][s];
                if (i > 0)
                {
                    int sPre = x.getTags(i - 1);
                    ZGold += YYlist[i][sPre, s];
                }
            }
        }
Пример #3
0
        //return the gradient of -log{P(y*|x,w)} as follows: E_{P(y|x)}(F(x,y)) - F(x,y*)
        virtual public double getGrad(List <double> vecGrad, model m, dataSeq x, baseHashSet <int> idSet)
        {
            if (idSet != null)
            {
                idSet.Clear();
            }
            int nTag = m.NTag;
            //compute beliefs
            belief bel       = new belief(x.Count, nTag);
            belief belMasked = new belief(x.Count, nTag);

            _inf.getBeliefs(bel, m, x, false);
            _inf.getBeliefs(belMasked, m, x, true);
            double ZGold = belMasked.Z;
            double Z     = bel.Z;

            List <featureTemp> fList;

            for (int i = 0; i < x.Count; i++)
            {
                fList = _fGene.getFeatureTemp(x, i);
                for (int j = 0; j < fList.Count; j++)
                {
                    featureTemp im = fList[j];
                    int         id = im.id;
                    double      v  = im.val;
                    for (int s = 0; s < nTag; s++)
                    {
                        int f = _fGene.getNodeFeatID(id, s);
                        if (idSet != null)
                        {
                            idSet.Add(f);
                        }
                        vecGrad[f] += bel.belState[i][s] * v;
                        vecGrad[f] -= belMasked.belState[i][s] * v;
                    }
                }
            }

            for (int i = 1; i < x.Count; i++)
            {
                for (int s = 0; s < nTag; s++)
                {
                    for (int sPre = 0; sPre < nTag; sPre++)
                    {
                        int f = _fGene.getEdgeFeatID(sPre, s);
                        if (idSet != null)
                        {
                            idSet.Add(f);
                        }
                        vecGrad[f] += bel.belEdge[i][sPre, s];
                        vecGrad[f] -= belMasked.belEdge[i][sPre, s];
                    }
                }
            }
            return(Z - ZGold);
        }
Пример #4
0
        //the scalar version
        virtual public double getGradCRF(List <double> vecGrad, double scalar, model m, dataSeq x, baseHashSet <int> idSet)
        {
            idSet.Clear();
            int nTag = m.NTag;
            //compute beliefs
            belief bel       = new belief(x.Count, nTag);
            belief belMasked = new belief(x.Count, nTag);

            _inf.getBeliefs(bel, m, x, scalar, false);
            _inf.getBeliefs(belMasked, m, x, scalar, true);
            double ZGold = belMasked.Z;
            double Z     = bel.Z;

            List <featureTemp> fList;

            //Loop over nodes to compute features and update the gradient
            for (int i = 0; i < x.Count; i++)
            {
                fList = _fGene.getFeatureTemp(x, i);
                foreach (featureTemp im in fList)
                {
                    for (int s = 0; s < nTag; s++)
                    {
                        int f = _fGene.getNodeFeatID(im.id, s);
                        idSet.Add(f);

                        vecGrad[f] += bel.belState[i][s] * im.val;
                        vecGrad[f] -= belMasked.belState[i][s] * im.val;
                    }
                }
            }

            //Loop over edges to compute features and update the gradient
            for (int i = 1; i < x.Count; i++)
            {
                for (int s = 0; s < nTag; s++)
                {
                    for (int sPre = 0; sPre < nTag; sPre++)
                    {
                        int f = _fGene.getEdgeFeatID(sPre, s);
                        idSet.Add(f);

                        vecGrad[f] += bel.belEdge[i][sPre, s];
                        vecGrad[f] -= belMasked.belEdge[i][sPre, s];
                    }
                }
            }
            return(Z - ZGold);//-log{P(y*|x,w)}
        }
Пример #5
0
        public void getBeliefs(belief bel, model m, dataSeq x, bool mask)
        {
            int nNodes  = x.Count;
            int nStates = m.NTag;

            dMatrix YY = new dMatrix(nStates, nStates);

            double[]      dAry       = new double[nStates];
            List <double> Y          = new List <double>(dAry);
            List <double> alpha_Y    = new List <double>(dAry);
            List <double> newAlpha_Y = new List <double>(dAry);
            List <double> tmp_Y      = new List <double>(dAry);

            for (int i = nNodes - 1; i > 0; i--)
            {
                getLogYY(m, x, i, ref YY, ref Y, false, mask);
                listTool.listSet(ref tmp_Y, bel.belState[i]);
                listTool.listAdd(ref tmp_Y, Y);
                logMultiply(YY, tmp_Y, bel.belState[i - 1]);
            }
            //compute Alpha values
            for (int i = 0; i < nNodes; i++)
            {
                getLogYY(m, x, i, ref YY, ref Y, false, mask);
                if (i > 0)
                {
                    listTool.listSet(ref tmp_Y, alpha_Y);
                    YY.transpose();
                    logMultiply(YY, tmp_Y, newAlpha_Y);
                    listTool.listAdd(ref newAlpha_Y, Y);
                }
                else
                {
                    listTool.listSet(ref newAlpha_Y, Y);
                }
                if (i > 0)
                {
                    listTool.listSet(ref tmp_Y, Y);
                    listTool.listAdd(ref tmp_Y, bel.belState[i]);
                    YY.transpose();
                    bel.belEdge[i].set(YY);
                    for (int yPre = 0; yPre < nStates; yPre++)
                    {
                        for (int y = 0; y < nStates; y++)
                        {
                            bel.belEdge[i][yPre, y] += tmp_Y[y] + alpha_Y[yPre];
                        }
                    }
                }
                List <double> tmp = bel.belState[i];
                listTool.listAdd(ref tmp, newAlpha_Y);
                listTool.listSet(ref alpha_Y, newAlpha_Y);
            }
            double Z = logSum(alpha_Y);

            for (int i = 0; i < nNodes; i++)
            {
                List <double> tmp = bel.belState[i];
                listTool.listAdd(ref tmp, -Z);
                listTool.listExp(ref tmp);
            }
            for (int i = 1; i < nNodes; i++)
            {
                bel.belEdge[i].add(-Z);
                bel.belEdge[i].eltExp();
            }
            bel.Z = Z;
        }
Пример #6
0
        //get beliefs (mariginal probabilities)
        public void getBeliefs(belief bel, model m, dataSeq x, List <dMatrix> YYlist, List <List <double> > Ylist)
        {
            int nNodes = x.Count;
            int nTag   = m.NTag;

            //dMatrix YY = new dMatrix(nTag, nTag);
            double[] dAry = new double[nTag];
            //List<double> Y = new List<double>(dAry);
            List <double> alpha_Y    = new List <double>(dAry);
            List <double> newAlpha_Y = new List <double>(dAry);//marginal probability from left to current node (including values of the current node)
            List <double> tmp_Y      = new List <double>(dAry);

            //compute beta values in a backward scan
            for (int i = nNodes - 1; i > 0; i--)
            {
                dMatrix       YY = YYlist[i];
                List <double> Y  = Ylist[i];
                //compute the Mi matrix
                //getLogYY(m, x, i, ref YY, ref Y, false, mask);
                listTool.listSet(ref tmp_Y, bel.belState[i]);//this is meaningful from the 2nd round
                listTool.listAdd(ref tmp_Y, Y);
                logMultiply(YY, tmp_Y, bel.belState[i - 1]);
            }
            //compute alpha values
            for (int i = 0; i < nNodes; i++)
            {
                dMatrix YY = null;
                if (i > 0)
                {
                    YY = new dMatrix(YYlist[i]);//should use the copy to avoid change
                }
                List <double> Y = Ylist[i];
                //compute the Mi matrix
                //getLogYY(m, x, i, ref YY, ref Y, false, mask);
                if (i > 0)
                {
                    listTool.listSet(ref tmp_Y, alpha_Y);//this is meaningful from the 2nd round
                    YY.transpose();
                    logMultiply(YY, tmp_Y, newAlpha_Y);
                    listTool.listAdd(ref newAlpha_Y, Y);
                }
                else
                {
                    listTool.listSet(ref newAlpha_Y, Y);
                }
                //setting marginal probability on edges
                if (i > 0)
                {
                    //beta + Y
                    listTool.listSet(ref tmp_Y, Y);
                    listTool.listAdd(ref tmp_Y, bel.belState[i]);
                    //YY
                    YY.transpose();
                    bel.belEdge[i].set(YY);
                    //belief = alpha + YY + beta + Y
                    for (int yPre = 0; yPre < nTag; yPre++)
                    {
                        for (int y = 0; y < nTag; y++)
                        {
                            bel.belEdge[i][yPre, y] += tmp_Y[y] + alpha_Y[yPre];
                        }
                    }
                }
                //setting marginal probability on nodes
                List <double> tmp = bel.belState[i];   //beta
                listTool.listAdd(ref tmp, newAlpha_Y); //belief = alpha + beta
                listTool.listSet(ref alpha_Y, newAlpha_Y);
            }
            double Z = logSum(alpha_Y);

            for (int i = 0; i < nNodes; i++)
            {
                List <double> tmp = bel.belState[i];
                listTool.listAdd(ref tmp, -Z);
                listTool.listExp(ref tmp);
            }
            for (int i = 1; i < nNodes; i++)
            {
                bel.belEdge[i].add(-Z);
                bel.belEdge[i].eltExp();
            }
            bel.Z = Z;//the overall potential function value
        }
Пример #7
0
        override public double getGradCRF(List <double> gradList, model m, dataSeq x, baseHashSet <int> idSet)
        {
            if (idSet != null)
            {
                idSet.Clear();
            }
            int nTag = m.NTag;
            //compute beliefs
            belief bel       = new belief(x.Count, nTag);
            belief belMasked = new belief(x.Count, nTag);
            //store the YY and Y
            List <dMatrix>        YYlist = new List <dMatrix>(), maskYYlist = new List <dMatrix>();
            List <List <double> > Ylist = new List <List <double> >(), maskYlist = new List <List <double> >();

            _inf.getYYandY(m, x, YYlist, Ylist, maskYYlist, maskYlist);
            _inf.getBeliefs(bel, m, x, YYlist, Ylist);
            _inf.getBeliefs(belMasked, m, x, maskYYlist, maskYlist);
            double ZGold = belMasked.Z;
            double Z = bel.Z;

            List <featureTemp> fList;

            //Loop over nodes to compute features and update the gradient
            for (int i = 0; i < x.Count; i++)
            {
                fList = _fGene.getFeatureTemp(x, i);
                foreach (featureTemp im in fList)
                {
                    for (int s = 0; s < nTag; s++)
                    {
                        int f = _fGene.getNodeFeatID(im.id, s);
                        if (idSet != null)
                        {
                            idSet.Add(f);
                        }

                        gradList[f] += bel.belState[i][s] * im.val;
                        gradList[f] -= belMasked.belState[i][s] * im.val;
                    }
                }
            }

            //Loop over edges to compute features and update the gradient
            for (int i = 1; i < x.Count; i++)
            {
                //non-rich
                if (Global.useTraditionalEdge)
                {
                    for (int s = 0; s < nTag; s++)
                    {
                        for (int sPre = 0; sPre < nTag; sPre++)
                        {
                            int f = _fGene.getEdgeFeatID(sPre, s);
                            if (idSet != null)
                            {
                                idSet.Add(f);
                            }

                            gradList[f] += bel.belEdge[i][sPre, s];
                            gradList[f] -= belMasked.belEdge[i][sPre, s];
                        }
                    }
                }

                //rich
                fList = _fGene.getFeatureTemp(x, i);
                foreach (featureTemp im in fList)
                {
                    int id = im.id;
                    if (id < _fGene.getNRichFeatTemp())
                    {
                        for (int s = 0; s < nTag; s++)
                        {
                            for (int sPre = 0; sPre < nTag; sPre++)
                            {
                                int f = _fGene.getEdgeFeatID(id, sPre, s);
                                if (idSet != null)
                                {
                                    idSet.Add(f);
                                }

                                gradList[f] += bel.belEdge[i][sPre, s] * im.val;
                                gradList[f] -= belMasked.belEdge[i][sPre, s] * im.val;
                            }
                        }
                    }
                }
            }
            return(Z - ZGold);//-log{P(y*|x,w)}
        }