Пример #1
0
        public List <Particle> Sample(int sampleCount, List <Particle> Particles)
        {
            // make N subdivisions, choose positions
            // with a consistent random offset
            var positions = Enumerable.Range(0, Particles.Count).Select(_ => (_ + SingleRandom.Instance.NextDouble()) / Particles.Count).ToArray();

            //indexes = np.zeros(N, 'i')
            var cumulative_sum = Particles.Select(_ => _.Weight).CumulativeSum().ToArray();
            int i = 0, j = 0;

            int[] indexes = new int[Particles.Count];

            while (i < Particles.Count)
            {
                if (positions[i] < cumulative_sum[j])
                {
                    indexes[i] = j;
                    i         += 1;
                }
                else
                {
                    j += 1;
                }
            }

            return(ReSampleHelper.ReSampleFromIndex(Particles, indexes));
        }
Пример #2
0
        public static bool DoResample(double effectiveCountMinRatio, IList <Particle> particles)
        {
            var effectiveCountRatio =
                (double)ReSampleHelper._effectiveParticleCount(ReSampleHelper.GetNormalizedWeights(particles)) / particles.Count;

            return(effectiveCountRatio > Single.Epsilon && effectiveCountRatio < effectiveCountMinRatio);
        }
        protected void NextEpoch(double effectiveCountMinRatio)
        {
            ////resample if too few effective particles
            //if (Neff(particles) < N / 2)
            //    particles = particleSampler.Sample(particles);

            Particles = ReSampleHelper.DoResample(effectiveCountMinRatio, Particles) ?
                        ReSampler.Sample(Particles.Count, Particles) :
                        Particles;

            Particles = Particles.Select(p => (Particle)p.Clone()).ToList();
        }
Пример #4
0
        /*
         * Given the current state estimate X and weight vector w, resample a new set of
         * states.We use the low-variance resampling algorithm from Thrun, Burgard, and Fox's
         * "Probabilistic Robotics". By default it will keep the number of samples constant
         */
        public List <Particle> Sample(int sampleCount, List <Particle> Particles)
        {
            var r = SingleRandom.Instance.NextDouble() / Particles.Count;

            int[] indexes = new int[Particles.Count];

            for (int i = 0; i < Particles.Count; i++)
            {
                var    u = r + (i - 1) / Particles.Count;
                double c = 0;
                int    j = 0;
                while (c < u)
                {
                    j++;
                    c = +Particles[i].Weight;
                }
                indexes[i] = j;
            }
            return(ReSampleHelper.ReSampleFromIndex(Particles, indexes));
        }