/// <summary> /// Creates and returns a new instance of Perceptron network /// </summary> /// <param name="inputNeuronsCount">number of neurons in input layer</param> /// <param name="outputNeuronsCount">number of neurons in output layer</param> /// <param name="transferFunctionType">type of transfer function to use</param> /// <param name="learningRule">learning rule class</param> /// <returns>instance of Perceptron network</returns> public static Perceptron CreatePerceptron(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType, Type learningRule) { Perceptron nnet = new Perceptron(inputNeuronsCount, outputNeuronsCount, transferFunctionType); if (learningRule.Name.Equals(typeof(PerceptronLearning).Name)) { nnet.LearningRule = new PerceptronLearning(); } else if (learningRule.Name.Equals(typeof(BinaryDeltaRule).Name)) { nnet.LearningRule = new BinaryDeltaRule(); } return nnet; }
/// <summary> /// Creates and returns a new instance of Perceptron network /// </summary> /// <param name="inputNeuronsCount">number of neurons in input layer</param> /// <param name="outputNeuronsCount">number of neurons in output layer</param> /// <param name="transferFunctionType">type of transfer function to use</param> /// <returns>instance of Perceptron network</returns> public static Perceptron CreatePerceptron(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType) { Perceptron nnet = new Perceptron(inputNeuronsCount, outputNeuronsCount, transferFunctionType); return nnet; }