Пример #1
0
        static void Main()
        {
            ILogger        logger        = new ConsoleLogger();
            IConfiguration configuration = new ConfigurationBuilder()
                                           .SetBasePath(Directory.GetCurrentDirectory())
                                           .AddJsonFile("appsetting.json")
                                           .Build();

            // Get topology.
            int[] topology = configuration.GetSection("topology").Get <int[]>();

            // Read data.
            TrainingData[] data;
            string         trainingDataFileName = Directory.GetCurrentDirectory() + "\\trainingData.json";

            if (File.Exists(trainingDataFileName))
            {
                data = TrainingData.ReadFromFile(trainingDataFileName);
            }
            else
            {
                data = TrainingData.GenerateData(topology.First(), topology.Last(), 2000);
                TrainingData.WriteToFile(data, trainingDataFileName);
            }

            // Train network.
            Net net = new Net(topology);

            for (int i = 0; i < data.Length; i++)
            {
                logger.LogLine($"Pass: {i + 1}");
                logger.LogLine($"Input: [{string.Join(", ", data[i].In.Select(_ => _.ToString("F3")))}]");
                logger.LogLine($"Targets: [{string.Join(", ", data[i].Out.Select(_ => _.ToString("F3")))}]");
                net.FeedForward(data[i].In);

                var resultVals = net.GetResults();
                logger.LogLine($"Outputs: [{string.Join(", ", resultVals.Select(_ => _.ToString("F3")))}]");

                net.BackProp(data[i].Out);
                logger.LogLine($"Net average error: {net.RecentAverageError.ToString("F9")}\n");
            }

            logger.LogLine("Done");
            System.Console.Read();
        }
Пример #2
0
        public static TrainingData[] GenerateData(int inputValsCount, int outputValsCount, int dataCount)
        {
            var random = new Random(0);
            var result = new TrainingData[dataCount];

            for (int i = 0; i < dataCount; i++)
            {
                result[i] = new TrainingData
                {
                    In  = new double[inputValsCount],
                    Out = new double[outputValsCount],
                };

                for (int j = 0; j < inputValsCount; j++)
                {
                    result[i].In[j] = random.Next(2);
                }
                for (int j = 0; j < outputValsCount; j++)
                {
                    result[i].Out[j] = result[i].In.Any(_ => _ == 0) ? 1 : 0;
                }
            }
            return(result);
        }