public MnistMLPTrainer(MnistDataMgr mgr, MLP mlp, bool nInput = true, bool nOutput = false) { _dataMgr = mgr; _normalizeInput = nInput; _normalizeOuput = nOutput; _network = mlp; }
public void InitMLP(int[] layerStruct, double learnRate) { _normalizeOuput = false; _normalizeInput = true; _layerStruct = layerStruct; _network = new MLP(_layerStruct, learnRate); }
public MainWindow() { InitializeComponent(); Graph = new UserControl1(); this.Content = Graph; var t = Generate(); // var s = t.Item1.Svd(true); //var nd = t.Item1.Multiply(s.VT().SubMatrix(0, 8, 0, 8)); var mlp = new MLP(8, 100, 1); var r = mlp.Train(t.Item1, t.Item2, null, null, 2500); Graph.Set(r.TrainingSquaredError, r.TrainingError); DenseMatrix data = new DenseMatrix(new double[,] { { 1, 1 }, { 1, 0 }, { 0, 0 }, { 0, 1 } }); DenseMatrix labels = new DenseMatrix(new double[,] { { 1, 0 }, { 0, 1 }, { 1, 0 }, { 0, 1 } }); //var mlp = new MLP(2, 100, 2); //var r = mlp.Train(data, labels, data, labels, 5000); //Graph.Set(r.TrainingSquaredError, r.TrainingError); }
public MnistMLPTester(MLP mlp, MnistDataMgr dataMgr) { _mlp = mlp; _dataMgr = dataMgr; _testSetSize = _dataMgr.count; _mse = 0; _successRate = 0; }
public DeepBeliefNet(SerializationInfo info, StreamingContext ctxt) { _layers = (List <double[]>)info.GetValue("Layers", typeof(List <double[]>)); _weights = (List <double[, ]>)info.GetValue("Weights", typeof(List <double[, ]>)); _bias = (List <double[]>)info.GetValue("Bias", typeof(List <double[]>)); _learningRate = (double)info.GetValue("LearningRate", typeof(double)); _outputNbr = (int)info.GetValue("OutputNbr", typeof(int)); _rnd = new Random(); _mlp = new MLP(_layers, _weights, _bias, _learningRate); }
public DeepBeliefNet(double learningRate, LRBM lrbm, int outputNbr) { _rnd = new Random(); _learningRate = learningRate; //_lrbm = lrbm; _outputNbr = outputNbr; _layers = new List <double[]>(); _weights = new List <double[, ]>(); _bias = new List <double[]>(); InitLRBM(lrbm); InitOutput(lrbm); _mlp = new MLP(_layers, _weights, _bias, _learningRate); }
public void InitMLP(int nrHidden, double learnRate) { int nrInput = _dataMgr.inputNum; int nrOutput; if (_normalizeOuput) { nrOutput = 1; } else { nrOutput = 10; } _layerStruct = new int[] { nrInput, nrHidden, nrOutput }; _network = new MLP(_layerStruct, learnRate); }
public DeepBeliefNet(double learningRate, LRBM lrbm, int[] outputStruct) { _rnd = new Random(); _learningRate = learningRate; //_lrbm = lrbm; int outputDepth = outputStruct.Length; _outputNbr = outputStruct[outputDepth - 1]; _layers = new List <double[]>(); _weights = new List <double[, ]>(); _bias = new List <double[]>(); InitLRBM(lrbm); InitOutputStruct(outputStruct, lrbm); _mlp = new MLP(_layers, _weights, _bias, _learningRate); }
void Init() { int [] netStruct = new int[] { _visibleNbr, _hiddenNbr, _visibleNbr }; _mlp = new MLP(netStruct, _learningRate); }