public Network(byte[] genes) : base(genes)
        {
            _genePointer = 0;
            inputLayer   = new Node[4];
            hiddenLayer  = new Node[5];
            outputLayer  = new Node[3];
            connections  = new List <Connection>();

            for (int i = 0; i < inputLayer.Length; i++)
            {
                inputLayer[i] = new InputNode(this);
            }

            for (int i = 0; i < hiddenLayer.Length; i++)
            {
                hiddenLayer[i] = new Node(this);
            }

            for (int i = 0; i < outputLayer.Length; i++)
            {
                outputLayer[i] = new Node(this);
            }

            ConnectLayers();
        }
Пример #2
0
        public FeedForwardNet(ref FeedForwardNet copyNet)
        {
            AbstractNode abNode;
            InputNode    inNode = copyNet.InputNode;

            this.InputNode = new InputNode(ref inNode);
            abNode         = (AbstractNode)this.InputNode;
            //original layer
            LayerOfNeurons curOrgLayer = (LayerOfNeurons)inNode.OutputNode;
            //copy layer
            LayerOfNeurons curCpyLayer = new LayerOfNeurons(ref curOrgLayer, ref abNode);

            while (curOrgLayer.OutputNode.GetType() == typeof(LayerOfNeurons))
            {
                curOrgLayer = (LayerOfNeurons)curOrgLayer.OutputNode;
                abNode      = (AbstractNode)curCpyLayer;
                curCpyLayer = new LayerOfNeurons(ref curOrgLayer, ref abNode);
            }
            abNode          = (AbstractNode)curCpyLayer;
            this.OutputNode = new OutputNode(ref abNode);
        }
 private void CreateBias()
 {
     Bias = new InputNode(Host);
     Bias.SetValue(1.0);
     Bias.ConnectTo(this, Host.GetNextGene());
 }