Пример #1
0
        public static bool AuxIntersectBB(Bez2D bezA, Bez2D bezB,
                                          InfoConnect icAB, InfoConnect icBA, ListInfoInters linters)
        {
            // bezA and bezB are irreducable !!!

            bool connectAB = ((icAB != null) && (icAB.IsConnect));
            bool connectBA = ((icBA != null) && (icBA.IsConnect));

            if ((connectBA) && (!connectAB))
            {
                throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
            }
            bool connect = connectAB || connectBA;

            Param parM;
            bool  isSelfIntersA = bezA.IsSelfInters(out parM);
            bool  isSelfIntersB = bezB.IsSelfInters(out parM);

            if (isSelfIntersA || isSelfIntersB)
            {
                BCurve curveA = bezA;
                if (isSelfIntersA)
                {
                    curveA = bezA.SupportFlat();
                }
                BCurve curveB = bezB;
                if (isSelfIntersB)
                {
                    curveB = bezB.SupportFlat();
                }
                int numIntersBefore = linters.Count;
                Inters.IntersectBB(curveA, curveB, null, null, linters);

                /*
                 *    CLEAN END-POINT if the curve does not return to it
                 */
                if ((connectAB) && (!connectBA))
                {
                    bool coversA1 = false;
                    bool coversB0 = false;
                    if (isSelfIntersA)
                    {
                        coversA1 = bezA.CoversEndPoint(false);
                    }
                    if (isSelfIntersB)
                    {
                        coversB0 = bezB.CoversEndPoint(true);
                    }
                    if ((!coversA1) && (!coversB0))
                    {
                        linters.CleanEndPointBezSI(bezA.End, numIntersBefore);
                    }
                }
                linters.ParamInvalidateBezSI(numIntersBefore);
                return(true);
            }

            // test for 1-dimensional intersection of supports
            bool  isB0OnA, isB2OnA;
            Param paramAInvB0, paramAInvB2;

            if (!bezB.Cp(0).InverseOn(bezA, out isB0OnA, out paramAInvB0))
            {
                return(false);
            }
            if (!bezB.Cp(2).InverseOn(bezA, out isB2OnA, out paramAInvB2))
            {
                return(false);
            }
            if ((isB0OnA) && (isB2OnA))
            {
                bool  areCoincide = true;
                Param par;
                for (int i = 1; i <= 3; i++)
                {
                    //    evaluate bezB at paramaters 1/4, 1/2, 3/4 and check
                    //    whether the points lie on bezA [-Infinity,Infinity]
                    VecD pnt = bezB.Evaluate(0.25 * i);
                    if (!pnt.InverseOn(bezA, out areCoincide, out par))
                    {
                        return(false);
                    }
                    if (!areCoincide)
                    {
                        break;
                    }
                }
                if (areCoincide)
                {
                    Param.TypeParam typeB0 = bezA.ParamClassify(paramAInvB0);
                    Param.TypeParam typeB2 = bezA.ParamClassify(paramAInvB2);
                    int             mult   = (int)typeB0 * (int)typeB2;

                    if (mult == 4)
                    {
                        return(true); // no intersections
                    }
                    else if (mult == 1)
                    {
                        // bezB is degenerated
                        throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                        //return false;
                    }
                    else if (mult == 2)
                    {
                        // 0-dimentional connection at the end point
                        if ((typeB0 == Param.TypeParam.Start) &&
                            (typeB2 == Param.TypeParam.Before))
                        {
                            if (connect)
                            {
                                throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                                //return false;
                            }
                            IntersD0 inters = new IntersD0(0, 0, bezB.Start, false);
                            linters.Add(inters);
                            return(true);
                        }
                        if ((typeB0 == Param.TypeParam.Before) &&
                            (typeB2 == Param.TypeParam.Start))
                        {
                            if (connect)
                            {
                                throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                                //return false;
                            }
                            IntersD0 inters = new IntersD0(1, 0, bezB.End, false);
                            linters.Add(inters);
                            return(true);
                        }
                        if ((typeB0 == Param.TypeParam.End) &&
                            (typeB2 == Param.TypeParam.After))
                        {
                            if (!connect)
                            {
                                IntersD0 inters = new IntersD0(0, 1, bezB.Start, false);
                                linters.Add(inters);
                                return(true);
                            }
                            return(true);
                        }
                        if ((typeB0 == Param.TypeParam.After) &&
                            (typeB2 == Param.TypeParam.End))
                        {
                            if (connect)
                            {
                                throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                                //return false;
                            }
                            IntersD0 inters = new IntersD0(1, 1, bezB.End, false);
                            linters.Add(inters);
                            return(true);
                        }
                    }
                    else if (mult <= 0)
                    {
                        InfoInters inters;
                        Inters.RefineIntersBBD1(bezA, bezB, out inters);
                        linters.Add(inters);
                        return(true);
                    }
                    throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                    //return false;
                }
            }

            /*
             *        INTERSECTION IS 0-DIMENTIONAL AT MOST
             */
            VecD[] cfA, cfB;
            bezA.PowerCoeff(out cfA);
            bezB.PowerCoeff(out cfB);

            Param parA, parB;
            int   numRootB;

            double[] rootsB;
            double   kappa = cfA[2].Cross(cfA[1]);

            // bezA and bezB are non-degenerated and consequent
            if (connectAB)
            {
                if (bezA.End != bezB.Start)
                {
                    throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                    //return false;
                }

                if (connectBA)
                {
                    // both ends are connected
                    if (bezA.Start != bezB.End)
                    {
                        throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                        //return false;
                    }

                    if (icAB.IsTangent || icBA.IsTangent)
                    {
                        // tangent connection - no additional intersections
                        return(true);
                    }

                    double   crossA2B2 = cfA[2].Cross(cfB[2]);
                    double[] cfEqn     = { kappa *(kappa + 2 * crossA2B2 + cfA[1].Cross(cfB[2])),
                                           -crossA2B2 * (2 * kappa + crossA2B2),
                                           crossA2B2 *crossA2B2 };
                    Equation.RootsReal(cfEqn[2], cfEqn[1], cfEqn[0],
                                       out numRootB, out rootsB);
                    if (numRootB == Equation.NumRootInfinite)
                    {
                        throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                        //return false;
                    }
                    if (rootsB != null)
                    {
                        for (int iRoot = 0; iRoot < numRootB; iRoot++)
                        {
                            parB = rootsB[iRoot];
                            if (bezB.IsEvaluableStrict(parB))
                            {
                                parA = 1.0 +
                                       parB.Val * (cfA[2].Cross(cfB[2]) * parB.Val +
                                                   cfA[2].Cross(cfB[1])) / kappa;
                                if (bezA.IsEvaluableStrict(parA) /*&& (parA!=1.)*/)
                                {
                                    IntersD0 inters = new IntersD0(parA, parB,
                                                                   0.5 * (bezA.Evaluate(parA) + bezB.Evaluate(parB)),
                                                                   false);
                                    linters.Add(inters);
                                }
                            }
                        }
                    }

                    return(true);
                }

                // consequent Bezier with one connection
                if (icAB.IsTangent)
                {
                    // tangent connection - at most 2 additional intersections
                    double[] cfEqn = { kappa *(kappa - cfB[2].Cross(cfB[1])),
                                       2 * cfA[2].Cross(cfB[2]) * kappa,
                                       cfA[2].Cross(cfB[2]) * cfA[2].Cross(cfB[2]) };
                    Equation.RootsReal(cfEqn[2], cfEqn[1], cfEqn[0],
                                       out numRootB, out rootsB);
                    if (numRootB == Equation.NumRootInfinite)
                    {
                        throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                        //return false;
                    }
                    if (rootsB != null)
                    {
                        for (int iRoot = 0; iRoot < numRootB; iRoot++)
                        {
                            parB = rootsB[iRoot];
                            if (bezB.IsEvaluableStrict(parB))
                            {
                                parA = 1 +
                                       parB.Val * (cfA[2].Cross(cfB[2]) * parB.Val +
                                                   cfA[2].Cross(cfB[1])) / kappa;
                                if (bezA.IsEvaluableStrict(parA) /*&&(parA!=1)*/)
                                {
                                    IntersD0 inters = new IntersD0(parA, parB,
                                                                   0.5 * (bezA.Evaluate(parA) + bezB.Evaluate(parB)),
                                                                   false);
                                    linters.Add(inters);
                                }
                            }
                        }
                    }
                    return(true);
                }
                else
                {
                    // non-tangent connection - at most 3 additional intersections
                    double[] cfEqn = { kappa *(2 * cfA[2].Cross(cfB[1]) + cfA[1].Cross(cfB[1])),
                                       cfA[2].Cross(cfB[1]) * cfA[2].Cross(cfB[1]) +
                                       kappa * (2 * cfA[2].Cross(cfB[2]) + cfA[1].Cross(cfB[2])),
                                       2 * cfA[2].Cross(cfB[2]) * cfA[2].Cross(cfB[1]),
                                       cfA[2].Cross(cfB[2]) * cfA[2].Cross(cfB[2]) };
                    Equation.RootsReal(cfEqn[3], cfEqn[2], cfEqn[1], cfEqn[0],
                                       out numRootB, out rootsB);
                    if (numRootB == Equation.NumRootInfinite)
                    {
                        throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                        //return false;
                    }
                    if (rootsB != null)
                    {
                        for (int iRoot = 0; iRoot < numRootB; iRoot++)
                        {
                            parB = rootsB[iRoot];
                            if (bezB.IsEvaluableStrict(parB))
                            {
                                parA = 1 +
                                       parB.Val * (cfA[2].Cross(cfB[2]) * parB +
                                                   cfA[2].Cross(cfB[1])) / kappa;
                                if (bezA.IsEvaluableStrict(parA) /*&&(parA!=1)*/)
                                {
                                    IntersD0 inters = new IntersD0(parA, parB,
                                                                   0.5 * (bezA.Evaluate(parA) + bezB.Evaluate(parB)),
                                                                   false);
                                    linters.Add(inters);
                                }
                            }
                        }
                    }
                    return(true);
                }
            }

            // bezA and bezB are non-degenerated, non-consequent curves
            bool isSwappedAB = false;

            if (Math.Abs(cfA[2].Cross(cfA[1])) < Math.Abs(cfB[2].Cross(cfB[1])))
            {
                kappa       = cfB[2].Cross(cfB[1]);
                isSwappedAB = true;
                VecD tmp;
                for (int i = 0; i < 3; i++)
                {
                    tmp = cfA[i]; cfA[i] = cfB[i]; cfB[i] = tmp;
                }
            }
            double[] e = { cfA[2].Cross(cfB[0] - cfA[0]),
                           cfA[2].Cross(cfB[1]),
                           cfA[2].Cross(cfB[2]) };
            double[] f = { (cfB[0] - cfA[0]).Cross(cfA[1]),
                           cfB[1].Cross(cfA[1]),
                           cfB[2].Cross(cfA[1]) };
            Equation.RootsReal(e[2] * e[2],
                               2 * e[2] * e[1],
                               e[1] * e[1] + 2 * e[2] * e[0] - kappa * f[2],
                               2 * e[1] * e[0] - kappa * f[1],
                               e[0] * e[0] - kappa * f[0],
                               out numRootB, out rootsB);

            if (numRootB == Equation.NumRootInfinite)
            {
                throw new ExceptionGMath("Intersect", "AuxIntersectBB(bez,bez)", null);
                //return false;
            }
            if (rootsB != null)
            {
                for (int iRoot = 0; iRoot < numRootB; iRoot++)
                {
                    parB = rootsB[iRoot];
                    parA = Equation.Evaluate(parB.Val, e[2], e[1], e[0]) / kappa;
                    if (isSwappedAB)
                    {
                        Param parTmp;
                        parTmp = parA;
                        parA   = parB;
                        parB   = parTmp;
                    }
                    if (bezA.IsEvaluableStrict(parA) && bezB.IsEvaluableStrict(parB))
                    {
                        IntersD0 inters = new IntersD0(parA, parB,
                                                       0.5 * (bezA.Evaluate(parA) + bezB.Evaluate(parB)),
                                                       false);
                        linters.Add(inters);
                    }
                }
            }
            return(true);
        }
Пример #2
0
        public static bool AuxIntersectBB(Bez2D bezA, Bez2D bezB,
            InfoConnect icAB, InfoConnect icBA, ListInfoInters linters)
        {
            // bezA and bezB are irreducable !!!

            bool connectAB = ((icAB!=null)&&(icAB.IsConnect));
            bool connectBA = ((icBA!=null)&&(icBA.IsConnect));
            if ((connectBA)&&(!connectAB))
            {
                throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
            }
            bool connect = connectAB||connectBA;

            Param parM;
            bool isSelfIntersA=bezA.IsSelfInters(out parM);
            bool isSelfIntersB=bezB.IsSelfInters(out parM);
            
            if (isSelfIntersA||isSelfIntersB)
            {
                BCurve curveA=bezA;
                if (isSelfIntersA) 
                    curveA=bezA.SupportFlat();
                BCurve curveB=bezB;
                if (isSelfIntersB)
                    curveB=bezB.SupportFlat();
                int numIntersBefore=linters.Count;
                Inters.IntersectBB(curveA,curveB,null,null,linters);
                /*
                 *    CLEAN END-POINT if the curve does not return to it
                 */
                if ((connectAB)&&(!connectBA))
                {
                    bool coversA1=false;
                    bool coversB0=false;
                    if (isSelfIntersA)
                    {
                        coversA1=bezA.CoversEndPoint(false);
                    }
                    if (isSelfIntersB)
                    {
                        coversB0=bezB.CoversEndPoint(true);
                    }
                    if ((!coversA1)&&(!coversB0))
                    {
                        linters.CleanEndPointBezSI(bezA.End,numIntersBefore);
                    }
                }
                linters.ParamInvalidateBezSI(numIntersBefore);
                return true;
            }

            // test for 1-dimensional intersection of supports
            bool isB0OnA, isB2OnA;
            Param paramAInvB0, paramAInvB2;
            if (!bezB.Cp(0).InverseOn(bezA,out isB0OnA,out paramAInvB0)) 
                return false;
            if (!bezB.Cp(2).InverseOn(bezA,out isB2OnA,out paramAInvB2)) 
                return false;
            if ((isB0OnA)&&(isB2OnA))
            {
                bool areCoincide=true;
                Param par;
                for (int i=1;i<=3;i++)
                {
                    //    evaluate bezB at paramaters 1/4, 1/2, 3/4 and check
                    //    whether the points lie on bezA [-Infinity,Infinity]
                    VecD pnt=bezB.Evaluate(0.25*i);
                    if (!pnt.InverseOn(bezA,out areCoincide,out par)) 
                        return false;
                    if (!areCoincide) 
                        break;
                }
                if (areCoincide)
                {
                    Param.TypeParam typeB0 = bezA.ParamClassify(paramAInvB0);
                    Param.TypeParam typeB2 = bezA.ParamClassify(paramAInvB2);
                    int mult = (int)typeB0*(int)typeB2;
                    
                    if (mult==4)
                    {
                        return true; // no intersections
                    }
                    else if (mult==1)
                    {
                        // bezB is degenerated
                        throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                        //return false;
                    }
                    else if (mult==2) 
                    {
                        // 0-dimentional connection at the end point
                        if ((typeB0==Param.TypeParam.Start)&&
                            (typeB2==Param.TypeParam.Before)) 
                        {
                            if (connect) 
                            {
                                throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                                //return false;    
                            }
                            IntersD0 inters=new IntersD0(0,0,bezB.Start,false);
                            linters.Add(inters);
                            return true;
                        }
                        if ((typeB0==Param.TypeParam.Before)&&
                            (typeB2==Param.TypeParam.Start)) 
                        {
                            if (connect)
                            {
                                throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                                //return false;    
                            }
                            IntersD0 inters=new IntersD0(1,0,bezB.End,false);
                            linters.Add(inters);
                            return true;
                        }
                        if ((typeB0==Param.TypeParam.End)&&
                            (typeB2==Param.TypeParam.After))
                        {
                            if (!connect)
                            {
                                IntersD0 inters=new IntersD0(0,1,bezB.Start,false);
                                linters.Add(inters);
                                return true;
                            }
                            return true;
                        }
                        if ((typeB0==Param.TypeParam.After)&&
                            (typeB2==Param.TypeParam.End)) 
                        {
                            if (connect)
                            {
                                throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                                //return false;    
                            }
                            IntersD0 inters=new IntersD0(1,1,bezB.End,false);
                            linters.Add(inters);
                            return true;
                        }
                    }
                    else if (mult<=0)
                    {
                        InfoInters inters;
                        Inters.RefineIntersBBD1(bezA,bezB,out inters);
                        linters.Add(inters);
                        return true;
                    }
                    throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                    //return false;                        
                }
            }

            /*
             *        INTERSECTION IS 0-DIMENTIONAL AT MOST
             */ 
            VecD[] cfA, cfB;
            bezA.PowerCoeff(out cfA);
            bezB.PowerCoeff(out cfB);
        
            Param parA, parB;
            int numRootB;
            double[] rootsB;
            double kappa=cfA[2].Cross(cfA[1]);

            // bezA and bezB are non-degenerated and consequent
            if (connectAB)
            {
                if (bezA.End!=bezB.Start) 
                {
                    throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                    //return false;                        
                }                    

                if (connectBA)     
                {
                    // both ends are connected
                    if (bezA.Start!=bezB.End) 
                    {
                        throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                        //return false;                        
                    }                    
                        
                    if (icAB.IsTangent||icBA.IsTangent) 
                    {
                        // tangent connection - no additional intersections
                        return true;
                    }

                    double crossA2B2=cfA[2].Cross(cfB[2]);
                    double[] cfEqn=    { kappa*(kappa+2*crossA2B2+cfA[1].Cross(cfB[2])),
                                      -crossA2B2*(2*kappa+crossA2B2),
                                      crossA2B2*crossA2B2};
                    Equation.RootsReal(cfEqn[2],cfEqn[1],cfEqn[0],
                        out numRootB, out rootsB);
                    if (numRootB==Equation.NumRootInfinite)
                    {
                        throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                        //return false;                        
                    }
                    if (rootsB!=null)
                    {
                        for (int iRoot=0; iRoot<numRootB; iRoot++)
                        {
                            parB=rootsB[iRoot];
                            if (bezB.IsEvaluableStrict(parB))
                            {
                                parA=1.0+
                                    parB.Val*(cfA[2].Cross(cfB[2])*parB.Val+
                                    cfA[2].Cross(cfB[1]))/kappa;
                                if (bezA.IsEvaluableStrict(parA) /*&& (parA!=1.)*/)
                                {
                                    IntersD0 inters=new IntersD0(parA,parB,
                                        0.5*(bezA.Evaluate(parA)+bezB.Evaluate(parB)),
                                        false);
                                    linters.Add(inters);
                                }
                            }
                        }
                    }
                    
                    return true;
                }

                // consequent Bezier with one connection
                if (icAB.IsTangent)  
                {
                    // tangent connection - at most 2 additional intersections
                    double[] cfEqn={kappa*(kappa-cfB[2].Cross(cfB[1])),
                                       2*cfA[2].Cross(cfB[2])*kappa,
                                       cfA[2].Cross(cfB[2])*cfA[2].Cross(cfB[2])};
                    Equation.RootsReal(cfEqn[2],cfEqn[1],cfEqn[0],
                        out numRootB, out rootsB);
                    if (numRootB==Equation.NumRootInfinite)
                    {
                        throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                        //return false;                        
                    }
                    if (rootsB!=null)
                    {
                        for (int iRoot=0; iRoot<numRootB; iRoot++)
                        {
                            parB=rootsB[iRoot];
                            if (bezB.IsEvaluableStrict(parB))
                            {
                                parA=1+
                                    parB.Val*(cfA[2].Cross(cfB[2])*parB.Val+
                                    cfA[2].Cross(cfB[1]))/kappa;
                                if (bezA.IsEvaluableStrict(parA)/*&&(parA!=1)*/)
                                {
                                    IntersD0 inters=new IntersD0(parA,parB,
                                        0.5*(bezA.Evaluate(parA)+bezB.Evaluate(parB)),
                                        false);
                                    linters.Add(inters);
                                }
                            }
                        }
                    }
                    return true;
                }
                else 
                {
                    // non-tangent connection - at most 3 additional intersections
                    double[] cfEqn={kappa*(2*cfA[2].Cross(cfB[1])+cfA[1].Cross(cfB[1])),
                                       cfA[2].Cross(cfB[1])*cfA[2].Cross(cfB[1])+
                                       kappa*(2*cfA[2].Cross(cfB[2])+cfA[1].Cross(cfB[2])),
                                       2*cfA[2].Cross(cfB[2])*cfA[2].Cross(cfB[1]),
                                       cfA[2].Cross(cfB[2])*cfA[2].Cross(cfB[2])};
                    Equation.RootsReal(cfEqn[3],cfEqn[2],cfEqn[1],cfEqn[0],
                        out numRootB, out rootsB);
                    if (numRootB==Equation.NumRootInfinite)
                    {
                        throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                        //return false;                        
                    }
                    if (rootsB!=null)
                    {
                        for (int iRoot=0; iRoot<numRootB; iRoot++)
                        {
                            parB=rootsB[iRoot];
                            if (bezB.IsEvaluableStrict(parB))
                            {
                                parA=1+
                                    parB.Val*(cfA[2].Cross(cfB[2])*parB+
                                    cfA[2].Cross(cfB[1]))/kappa;
                                if (bezA.IsEvaluableStrict(parA)/*&&(parA!=1)*/)
                                {
                                    IntersD0 inters=new IntersD0(parA,parB,
                                        0.5*(bezA.Evaluate(parA)+bezB.Evaluate(parB)),
                                        false);
                                    linters.Add(inters);
                                }
                            }
                        }
                    }
                    return true;
                }
            }

            // bezA and bezB are non-degenerated, non-consequent curves
            bool isSwappedAB=false;
            if (Math.Abs(cfA[2].Cross(cfA[1]))<Math.Abs(cfB[2].Cross(cfB[1])))
            {
                kappa = cfB[2].Cross(cfB[1]); 
                isSwappedAB = true;
                VecD tmp;
                for (int i=0; i<3; i++)
                {
                    tmp=cfA[i]; cfA[i]=cfB[i]; cfB[i]=tmp;
                }
            }
            double[] e={cfA[2].Cross(cfB[0]-cfA[0]),
                           cfA[2].Cross(cfB[1]),
                           cfA[2].Cross(cfB[2])};
            double[] f={(cfB[0]-cfA[0]).Cross(cfA[1]),
                           cfB[1].Cross(cfA[1]),
                           cfB[2].Cross(cfA[1])};
            Equation.RootsReal(e[2]*e[2], 
                2*e[2]*e[1], 
                e[1]*e[1]+2*e[2]*e[0]-kappa*f[2],
                2*e[1]*e[0]-kappa*f[1], 
                e[0]*e[0]-kappa*f[0],
                out numRootB, out rootsB);

            if (numRootB==Equation.NumRootInfinite)
            {
                throw new ExceptionGMath("Intersect","AuxIntersectBB(bez,bez)",null);
                //return false;                        
            }
            if (rootsB!=null)
            {
                for (int iRoot=0; iRoot<numRootB; iRoot++)
                {
                    parB=rootsB[iRoot];
                    parA=Equation.Evaluate(parB.Val, e[2], e[1], e[0])/kappa;        
                    if (isSwappedAB) 
                    {
                        Param parTmp; 
                        parTmp=parA; 
                        parA=parB; 
                        parB=parTmp;
                    }
                    if (bezA.IsEvaluableStrict(parA)&&bezB.IsEvaluableStrict(parB))
                    {
                        IntersD0 inters=new IntersD0(parA,parB,
                            0.5*(bezA.Evaluate(parA)+bezB.Evaluate(parB)),
                            false);
                        linters.Add(inters);
                    }
                }
            }
            return true;
        }
Пример #3
0
        public static bool AuxIntersectBB(SegD seg, Bez2D bez,
                                          InfoConnect icAB, InfoConnect icBA, ListInfoInters linters)
        {
            // both seg & bez are irreducable !!!
            if (linters == null)
            {
                throw new ExceptionGMath("Intersect", "AuxIntersectBB(seg,bez)", "Null argument");
            }

            bool connectAB = ((icAB != null) && (icAB.IsConnect));
            bool connectBA = ((icBA != null) && (icBA.IsConnect));

            if ((connectBA) && (!connectAB))
            {
                throw new ExceptionGMath("Intersect", "AuxIntersectBB(seg,bez)", null);
                //return false;
            }
            bool connect = connectAB || connectBA;

            if (!connect)
            {
                int numIntersBefore = linters.Count;
                if (!Inters.AuxIntersectBL(bez, seg, linters))
                {
                    return(false);
                }
                linters.ParamSwap(numIntersBefore);
                return(true);
            }

            // bez and seg are connected, => connectAB=true
            Param parM;

            if (bez.IsSelfInters(out parM))
            {
                if (connectBA) // both ends are connected
                {
                    // parM!=Infinity - otherwise the seg is degenerated
                    double   valM = parM.Val;
                    IntersD1 inters;
                    if (valM > 1)
                    {
                        inters = new IntersD1(0, 1,
                                              1, 1 / (2 * valM - 1), seg, true);
                    }
                    else
                    {
                        inters = new IntersD1(0, 1,
                                              1, (2 * valM) / (2 * valM - 1), seg, true);
                    }
                    linters.Add(inters);
                    return(true);
                }
                if (icAB.IsTangent)
                {
                    return(true); // no additional intersections
                }
                else
                {
                    SegD       segSupp = bez.SupportFlat();
                    InfoInters inters;
                    if (!Inters.IntersectLL(seg, segSupp, out inters))
                    {
                        return(false);
                    }
                    if (inters == null)
                    {
                        return(true);
                    }
                    inters.ParamInvalidateBezSI();
                    int numIntersBefore = linters.Count;
                    linters.Add(inters);

                    /*
                     *    CLEAN END-POINT if the Bezier does not return to it
                     */
                    bool coversBezStart = bez.CoversEndPoint(true);
                    if (!coversBezStart)
                    {
                        linters.CleanEndPointBezSI(bez.Start, numIntersBefore);
                    }
                    return(true);
                }
            }

            //    bezier is NOT self-intersecting
            if (connectBA)
            {
                return(true);    // no additional intersections
            }
            if (icAB.IsTangent)
            {
                return(true);    // no additional intersections
            }
            //    seg & bez are connected and not-tangent,=>
            //    at most one additional point of intersection
            VecD[] cfSeg, cfBez;
            seg.PowerCoeff(out cfSeg);
            bez.PowerCoeff(out cfBez);
            VecD tang = (seg as LCurve).DirTang;
            VecD norm = (seg as LCurve).DirNorm;

            // connected but not-tangent: one
            double[] rootsBez;
            int      numRootBez;

            Equation.RootsReal(cfBez[2].Dot(norm), cfBez[1].Dot(norm),
                               out numRootBez, out rootsBez);
            if (numRootBez == Equation.NumRootInfinite)
            {
                throw new ExceptionGMath("Intersect", "AuxIntersectBB(seg,bez)", null);
                //return false;
            }
            if (rootsBez == null)
            {
                return(true);
            }
            Param parBez = rootsBez[0];

            if (bez.IsEvaluableStrict(parBez))
            {
                double valBez = parBez.Val;
                Param  parSeg = 1 + valBez * (cfBez[2].Dot(tang) * valBez + cfBez[1].Dot(tang)) / cfSeg[1].Dot(tang);
                if (seg.IsEvaluableStrict(parSeg)) // ??? && (parSeg!=1)
                {
                    IntersD0 inters = new IntersD0(parSeg, parBez,
                                                   0.5 * (seg.Evaluate(parSeg) + bez.Evaluate(parBez)), false);
                    linters.Add(inters);
                }
            }
            return(true);
        }
Пример #4
0
        public static bool AuxIntersectBB(SegD seg, Bez2D bez,
            InfoConnect icAB, InfoConnect icBA, ListInfoInters linters)
        {
            // both seg & bez are irreducable !!!
            if (linters==null)
            {
                throw new ExceptionGMath("Intersect","AuxIntersectBB(seg,bez)","Null argument");
            }
            
            bool connectAB = ((icAB!=null)&&(icAB.IsConnect));
            bool connectBA = ((icBA!=null)&&(icBA.IsConnect));
            if ((connectBA)&&(!connectAB)) 
            {
                throw new ExceptionGMath("Intersect","AuxIntersectBB(seg,bez)",null);
                //return false;
            }
            bool connect=connectAB||connectBA;

            if (!connect)
            {
                int numIntersBefore=linters.Count;
                if (!Inters.AuxIntersectBL(bez,seg,linters))
                    return false;
                linters.ParamSwap(numIntersBefore);
                return true;
            }

            // bez and seg are connected, => connectAB=true
            Param parM;
            if (bez.IsSelfInters(out parM))
            {
                if (connectBA) // both ends are connected
                {
                    // parM!=Infinity - otherwise the seg is degenerated
                    double valM=parM.Val;
                    IntersD1 inters;
                    if (valM>1)
                    {
                        inters=new IntersD1(0,1,
                            1,1/(2*valM-1),seg,true);
                    }
                    else
                    {
                        inters=new IntersD1(0,1,
                            1,(2*valM)/(2*valM-1),seg,true);
                    }
                    linters.Add(inters);
                    return true;
                }
                if (icAB.IsTangent)
                {
                    return true; // no additional intersections
                }
                else
                {
                    SegD segSupp=bez.SupportFlat();
                    InfoInters inters;
                    if (!Inters.IntersectLL(seg,segSupp,out inters))
                        return false;
                    if (inters==null)
                        return true;
                    inters.ParamInvalidateBezSI();
                    int numIntersBefore=linters.Count;
                    linters.Add(inters);
                    /*
                     *    CLEAN END-POINT if the Bezier does not return to it
                     */
                    bool coversBezStart=bez.CoversEndPoint(true);
                    if (!coversBezStart)
                    {
                        linters.CleanEndPointBezSI(bez.Start,numIntersBefore);
                    }
                    return true;
                }
            }
            
            //    bezier is NOT self-intersecting
            if (connectBA)    
                return true;    // no additional intersections
            if (icAB.IsTangent)
                return true;    // no additional intersections
            
            //    seg & bez are connected and not-tangent,=>
            //    at most one additional point of intersection
            VecD[] cfSeg, cfBez; 
            seg.PowerCoeff(out cfSeg); 
            bez.PowerCoeff(out cfBez);
            VecD tang=(seg as LCurve).DirTang;
            VecD norm=(seg as LCurve).DirNorm;

            // connected but not-tangent: one
            double[] rootsBez;
            int numRootBez;
            Equation.RootsReal(cfBez[2].Dot(norm),cfBez[1].Dot(norm),
                    out numRootBez, out rootsBez); 
            if (numRootBez==Equation.NumRootInfinite)
            {
                throw new ExceptionGMath("Intersect","AuxIntersectBB(seg,bez)",null);
                //return false;
            }
            if (rootsBez==null)
                return true;
            Param parBez=rootsBez[0];
            if (bez.IsEvaluableStrict(parBez))
            {
                double valBez=parBez.Val;
                Param parSeg=1+valBez*(cfBez[2].Dot(tang)*valBez+cfBez[1].Dot(tang))/cfSeg[1].Dot(tang);
                if (seg.IsEvaluableStrict(parSeg)) // ??? && (parSeg!=1)
                {
                    IntersD0 inters=new IntersD0(parSeg,parBez,
                        0.5*(seg.Evaluate(parSeg)+bez.Evaluate(parBez)),false);
                    linters.Add(inters);
                }
            }
            return true;
        }