Пример #1
0
        public override ManeuverParameters MakeNodeImpl(Orbit o, double UT, MechJebModuleTargetController target)
        {
            if (!target.NormalTargetExists)
            {
                throw new Exception("must select a target for the Hohmann transfer.");
            }
            else if (o.referenceBody != target.TargetOrbit.referenceBody)
            {
                throw new Exception("target for Hohmann transfer must be in the same sphere of influence.");
            }
            else if (o.eccentricity > 1)
            {
                throw new Exception("starting orbit for Hohmann transfer must not be hyperbolic.");
            }
            else if (target.TargetOrbit.eccentricity > 1)
            {
                throw new Exception("target orbit for Hohmann transfer must not be hyperbolic.");
            }
            else if (o.RelativeInclination(target.TargetOrbit) > 30 && o.RelativeInclination(target.TargetOrbit) < 150)
            {
                errorMessage = "Warning: target's orbital plane is at a " + o.RelativeInclination(target.TargetOrbit).ToString("F0") + "º angle to starting orbit's plane (recommend at most 30º). Planned transfer may not intercept target properly.";
            }
            else if (o.eccentricity > 0.2)
            {
                errorMessage = "Warning: Recommend starting Hohmann transfers from a near-circular orbit (eccentricity < 0.2). Planned transfer is starting from an orbit with eccentricity " + o.eccentricity.ToString("F2") + " and so may not intercept target properly.";
            }

            Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(o, target.TargetOrbit, UT, out UT);

            return(new ManeuverParameters(dV, UT));
        }
        override public void activateAction(int actionIndex)
        {
            base.activateAction(actionIndex);
            double   UT;
            Vessel   vessel = FlightGlobals.ActiveVessel;
            Vector3d dV     = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(this.scriptModule.orbit, core.target.TargetOrbit, this.scriptModule.vesselState.time, out UT);

            vessel.RemoveAllManeuverNodes();
            vessel.PlaceManeuverNode(this.scriptModule.orbit, dV, UT);
            this.endAction();
        }
Пример #3
0
        public override void Drive(FlightCtrlState s)
        {
            if (!core.target.NormalTargetExists)
            {
                users.Clear();
                return;
            }

            core.node.autowarp = core.target.Distance > 1000; //don't warp when close to target, because warping introduces small perturbations

            //If we get within the target distance and then next maneuver node is still
            //far in the future, delete it and we will create a new one to match velocities immediately.
            //This can often happen because the target vessel's orbit shifts slightly when it is unpacked.
            if (core.target.Distance < desiredDistance &&
                vessel.patchedConicSolver.maneuverNodes.Count > 0 &&
                vessel.patchedConicSolver.maneuverNodes[0].UT > vesselState.time + 1)
            {
                vessel.RemoveAllManeuverNodes();
            }

            if (vessel.patchedConicSolver.maneuverNodes.Count > 0)
            {
                //If we have plotted a maneuver, execute it.
                if (!core.node.enabled)
                {
                    core.node.ExecuteAllNodes(this);
                }
            }
            else if (core.target.Distance < desiredDistance * 1.05 + 2 &&
                     core.target.RelativeVelocity.magnitude < 1)
            {
                //finished
                users.Clear();
                core.thrust.ThrustOff();
                status = "Successful rendezvous";
            }
            else if (core.target.Distance < desiredDistance * 1.05 + 2)
            {
                //We are within the target distance: match velocities
                double   UT = vesselState.time;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);
                vessel.PlaceManeuverNode(orbit, dV, UT);
                status = "Within " + desiredDistance.ToString() + "m: matching velocities.";
            }
            else if (core.target.Distance < vesselState.radius / 25)
            {
                if (orbit.NextClosestApproachDistance(core.target.Orbit, vesselState.time) < desiredDistance &&
                    orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time) < vesselState.time + 150)
                {
                    //We're close to the target, and on a course that will take us closer. Kill relvel at closest approach
                    double   UT = orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);

                    //adjust burn time so as to come to rest at the desired distance from the target:
                    double approachDistance = orbit.Separation(core.target.Orbit, UT);
                    double approachSpeed    = (orbit.SwappedOrbitalVelocityAtUT(UT) - core.target.Orbit.SwappedOrbitalVelocityAtUT(UT)).magnitude;
                    if (approachDistance < desiredDistance)
                    {
                        UT -= Math.Sqrt(Math.Abs(desiredDistance * desiredDistance - approachDistance * approachDistance)) / approachSpeed;
                    }

                    //if coming in hot, stop early to avoid crashing:
                    if (approachSpeed > 10)
                    {
                        UT -= 1;
                    }

                    vessel.PlaceManeuverNode(orbit, dV, UT);

                    status = "Planning to match velocities at closest approach.";
                }
                else
                {
                    //We're not far from the target. Close the distance
                    double closingSpeed = core.target.Distance / 100;
                    if (closingSpeed > 100)
                    {
                        closingSpeed = 100;
                    }
                    double closingTime = core.target.Distance / closingSpeed;

                    double   UT          = vesselState.time + 15;
                    double   interceptUT = UT + closingTime;
                    Vector3d dV          = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.Orbit, interceptUT, 0);
                    vessel.PlaceManeuverNode(orbit, dV, UT);

                    status = "Close to target: plotting intercept";
                }
            }
            else if (orbit.NextClosestApproachDistance(core.target.Orbit, vesselState.time) < core.target.Orbit.semiMajorAxis / 25)
            {
                //We're not close to the target, but we're on an approximate intercept course.
                //Kill relative velocities at closest approach
                double   UT = orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time);
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);

                //adjust burn time so as to come to rest at the desired distance from the target:
                double approachDistance = (orbit.SwappedAbsolutePositionAtUT(UT) - core.target.Orbit.SwappedAbsolutePositionAtUT(UT)).magnitude;
                double approachSpeed    = (orbit.SwappedOrbitalVelocityAtUT(UT) - core.target.Orbit.SwappedOrbitalVelocityAtUT(UT)).magnitude;
                if (approachDistance < desiredDistance)
                {
                    UT -= Math.Sqrt(Math.Abs(desiredDistance * desiredDistance - approachDistance * approachDistance)) / approachSpeed;
                }

                //if coming in hot, stop early to avoid crashing:
                if (approachSpeed > 10)
                {
                    UT -= 1;
                }

                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "On intercept course. Planning to match velocities at closest approach.";
            }
            else if (orbit.RelativeInclination(core.target.Orbit) < 0.05 && orbit.eccentricity < 0.05 && orbit.SynodicPeriod(core.target.Orbit) < 5 * orbit.period)
            {
                //We're not on an intercept course, but we have a circular orbit in the right plane.
                //Also we are phasing quickly enough that it won't be too long until an intercept window
                //Plot a Hohmann transfer intercept.
                double   UT;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.Orbit, vesselState.time, out UT);
                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "Planning Hohmann transfer for intercept.";
            }
            else if (orbit.RelativeInclination(core.target.Orbit) < 0.05 && orbit.eccentricity < 0.05)
            {
                //We are in a circular orbit in the right plane, but we aren't phasing quickly enough. Move to a better phasing orbit
                double lowPhasingRadius  = core.target.Orbit.semiMajorAxis / 1.16;
                double highPhasingRadius = core.target.Orbit.semiMajorAxis * 1.16;

                bool useLowPhasingRadius = (lowPhasingRadius > mainBody.RealMaxAtmosphereAltitude() + 3000 && orbit.semiMajorAxis < core.target.orbit.semiMajorAxis);

                double phasingOrbitRadius = (useLowPhasingRadius ? lowPhasingRadius : highPhasingRadius);

                if (orbit.ApR < phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + 15;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else if (orbit.PeR > phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + 15;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else
                {
                    double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }

                status = "Increasing phasing rate by establishing new phasing orbit at " + MuUtils.ToSI(phasingOrbitRadius - mainBody.Radius, 0) + "m";
            }
            else if (orbit.RelativeInclination(core.target.Orbit) < 0.05)
            {
                //We're not on an intercept course. We're in the right plane, but our orbit isn't circular. Circularize.

                bool circularizeAtPe;
                if (orbit.eccentricity > 1)
                {
                    circularizeAtPe = true;
                }
                else
                {
                    circularizeAtPe = Math.Abs(orbit.PeR - core.target.Orbit.semiMajorAxis) < Math.Abs(orbit.ApR - core.target.Orbit.semiMajorAxis);
                }

                double UT;
                if (circularizeAtPe)
                {
                    UT = Math.Max(vesselState.time, orbit.NextPeriapsisTime(vesselState.time));
                }
                else
                {
                    UT = orbit.NextApoapsisTime(vesselState.time);
                }

                Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "Circularizing.";
            }
            else
            {
                //We're not on an intercept course, and we're not in the right plane. Match planes
                bool ascending;
                if (orbit.eccentricity < 1)
                {
                    if (orbit.TimeOfAscendingNode(core.target.Orbit, vesselState.time) < orbit.TimeOfDescendingNode(core.target.Orbit, vesselState.time))
                    {
                        ascending = true;
                    }
                    else
                    {
                        ascending = false;
                    }
                }
                else
                {
                    if (orbit.AscendingNodeExists(core.target.Orbit))
                    {
                        ascending = true;
                    }
                    else
                    {
                        ascending = false;
                    }
                }

                double   UT;
                Vector3d dV;
                if (ascending)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.Orbit, vesselState.time, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.Orbit, vesselState.time, out UT);
                }

                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "Matching planes.";
            }
        }
Пример #4
0
        protected override void WindowGUI(int windowID)
        {
            if (!core.target.NormalTargetExists)
            {
                GUILayout.Label("Select a target to rendezvous with.");
                base.WindowGUI(windowID);
                return;
            }

            if (core.target.Orbit.referenceBody != orbit.referenceBody)
            {
                GUILayout.Label("Rendezvous target must be in the same sphere of influence.");
                base.WindowGUI(windowID);
                return;
            }

            GUILayout.BeginVertical();

            //Information readouts:

            GuiUtils.SimpleLabel("Rendezvous target", core.target.Name);

            double leadTime = 30;

            GuiUtils.SimpleLabel("Target orbit", MuUtils.ToSI(core.target.Orbit.PeA, 3) + "m x " + MuUtils.ToSI(core.target.Orbit.ApA, 3) + "m");
            GuiUtils.SimpleLabel("Current orbit", MuUtils.ToSI(orbit.PeA, 3) + "m x " + MuUtils.ToSI(orbit.ApA, 3) + "m");
            GuiUtils.SimpleLabel("Relative inclination", orbit.RelativeInclination(core.target.Orbit).ToString("F2") + "º");

            double closestApproachTime = orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time);

            GuiUtils.SimpleLabel("Time until closest approach", GuiUtils.TimeToDHMS(closestApproachTime - vesselState.time));
            GuiUtils.SimpleLabel("Separation at closest approach", MuUtils.ToSI(orbit.Separation(core.target.Orbit, closestApproachTime), 0) + "m");


            //Maneuver planning buttons:

            if (GUILayout.Button("Align Planes"))
            {
                double   UT;
                Vector3d dV;
                if (orbit.AscendingNodeExists(core.target.Orbit))
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.Orbit, vesselState.time, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.Orbit, vesselState.time, out UT);
                }
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }


            GUILayout.BeginHorizontal();
            if (GUILayout.Button("Establish new orbit at"))
            {
                double phasingOrbitRadius = phasingOrbitAltitude + mainBody.Radius;

                vessel.RemoveAllManeuverNodes();
                if (orbit.ApR < phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + leadTime;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else if (orbit.PeR > phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + leadTime;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else
                {
                    double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }
            }
            phasingOrbitAltitude.text = GUILayout.TextField(phasingOrbitAltitude.text, GUILayout.Width(70));
            GUILayout.Label("km", GUILayout.ExpandWidth(false));
            GUILayout.EndHorizontal();

            if (GUILayout.Button("Intercept with Hohmann transfer"))
            {
                double   UT;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.Orbit, vesselState.time, out UT);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            if (GUILayout.Button("Match velocities at closest approach"))
            {
                double   UT = closestApproachTime;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            if (GUILayout.Button("Get closer"))
            {
                double   UT          = vesselState.time;
                double   interceptUT = UT + 100;
                Vector3d dV          = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.Orbit, interceptUT, 10);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            GUILayout.EndVertical();

            base.WindowGUI(windowID);
        }
Пример #5
0
        public override ManeuverParameters MakeNodeImpl(Orbit o, double universalTime, MechJebModuleTargetController target)
        {
            double UT = 0;

            if (!target.NormalTargetExists)
            {
                throw new OperationException(Localizer.Format("#MechJeb_Hohm_Exception1"));//must select a target for the bi-impulsive transfer.
            }
            else if (o.referenceBody != target.TargetOrbit.referenceBody)
            {
                throw new OperationException(Localizer.Format("#MechJeb_Hohm_Exception2"));//target for bi-impulsive transfer must be in the same sphere of influence.
            }

            Vector3d dV;

            Orbit targetOrbit = target.TargetOrbit;

            if (periodOffset != 0)
            {
                targetOrbit = target.TargetOrbit.Clone();
                targetOrbit.MutatedOrbit(periodOffset: periodOffset);
            }

            if (simpleTransfer)
            {
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(o, targetOrbit, universalTime, out UT);
            }
            else
            {
                if (timeSelector.timeReference == TimeReference.COMPUTED)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeForBiImpulsiveAnnealed(o, targetOrbit, universalTime, out UT, intercept_only: intercept_only);
                }
                else
                {
                    var    anExists = o.AscendingNodeExists(target.TargetOrbit);
                    var    dnExists = o.DescendingNodeExists(target.TargetOrbit);
                    double anTime   = o.TimeOfAscendingNode(target.TargetOrbit, universalTime);
                    double dnTime   = o.TimeOfDescendingNode(target.TargetOrbit, universalTime);

                    if (timeSelector.timeReference == TimeReference.REL_ASCENDING)
                    {
                        if (!anExists)
                        {
                            throw new OperationException(Localizer.Format("#MechJeb_Hohm_Exception3"));//ascending node with target doesn't exist.
                        }
                        UT = anTime;
                    }
                    else if (timeSelector.timeReference == TimeReference.REL_DESCENDING)
                    {
                        if (!dnExists)
                        {
                            throw new OperationException(Localizer.Format("#MechJeb_Hohm_Exception4"));//descending node with target doesn't exist.
                        }
                        UT = dnTime;
                    }
                    else if (timeSelector.timeReference == TimeReference.REL_NEAREST_AD)
                    {
                        if (!anExists && !dnExists)
                        {
                            throw new OperationException(Localizer.Format("#MechJeb_Hohm_Exception5"));//neither ascending nor descending node with target exists.
                        }
                        if (!dnExists || anTime <= dnTime)
                        {
                            UT = anTime;
                        }
                        else
                        {
                            UT = dnTime;
                        }
                    }

                    UT = timeSelector.ComputeManeuverTime(o, universalTime, target);
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeForBiImpulsiveAnnealed(o, targetOrbit, UT, out UT, intercept_only: intercept_only, fixed_ut: true);
                }
            }

            return(new ManeuverParameters(dV, UT));
        }
        protected override void WindowGUI(int windowID)
        {
            if (btNormal == null)
            {
                btNormal = new GUIStyle(GUI.skin.button);
                btNormal.normal.textColor   = btNormal.focused.textColor = Color.white;
                btNormal.hover.textColor    = btNormal.active.textColor = Color.yellow;
                btNormal.onNormal.textColor = btNormal.onFocused.textColor = btNormal.onHover.textColor = btNormal.onActive.textColor = Color.green;
                btNormal.padding            = new RectOffset(8, 8, 8, 8);

                btActive           = new GUIStyle(btNormal);
                btActive.active    = btActive.onActive;
                btActive.normal    = btActive.onNormal;
                btActive.onFocused = btActive.focused;
                btActive.hover     = btActive.onHover;
            }

            GUILayout.BeginVertical();

            if (autopilot != null)
            {
                if (autopilot.enabled)
                {
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button1")))//Disengage autopilot
                    {
                        autopilot.users.Remove(this);
                    }
                }
                else
                {
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button2")))//Engage autopilot
                    {
                        autopilot.users.Add(this);
                    }
                }
                if (ascentPathIdx == ascentType.PVG)
                {
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button3")))//Reset Guidance (DO NOT PRESS)
                    {
                        core.guidance.Reset();
                    }


                    GUILayout.BeginHorizontal();                                                                                                                   // EditorStyles.toolbar);

                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button4"), autopilot.showTargeting ? btActive : btNormal, GUILayout.ExpandWidth(true))) //"TARG"
                    {
                        autopilot.showTargeting = !autopilot.showTargeting;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button5"), autopilot.showGuidanceSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))  //GUID
                    {
                        autopilot.showGuidanceSettings = !autopilot.showGuidanceSettings;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button6"), autopilot.showSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))  //OPTS
                    {
                        autopilot.showSettings = !autopilot.showSettings;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button7"), autopilot.showStatus ? btActive : btNormal, GUILayout.ExpandWidth(true)))  //STATUS
                    {
                        autopilot.showStatus = !autopilot.showStatus;
                    }
                    GUILayout.EndHorizontal();
                }
                else if (ascentPathIdx == ascentType.GRAVITYTURN)
                {
                    GUILayout.BeginHorizontal();                                                                                                                   // EditorStyles.toolbar);
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button8"), autopilot.showTargeting ? btActive : btNormal, GUILayout.ExpandWidth(true))) //TARG
                    {
                        autopilot.showTargeting = !autopilot.showTargeting;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button9"), autopilot.showGuidanceSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))  //GUID
                    {
                        autopilot.showGuidanceSettings = !autopilot.showGuidanceSettings;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button10"), autopilot.showSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))  //OPTS
                    {
                        autopilot.showSettings = !autopilot.showSettings;
                    }
                    GUILayout.EndHorizontal();
                }
                else if (ascentPathIdx == ascentType.BREATHING_GT)
                {
                    GUILayout.BeginHorizontal();                                                                                                                   // EditorStyles.toolbar);
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button8"), autopilot.showTargeting ? btActive : btNormal, GUILayout.ExpandWidth(true))) //TARG
                    {
                        autopilot.showTargeting = !autopilot.showTargeting;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button9"), autopilot.showGuidanceSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))//GUID
                    {
                        autopilot.showGuidanceSettings = !autopilot.showGuidanceSettings;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button10"), autopilot.showSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))//OPTS
                    {
                        autopilot.showSettings = !autopilot.showSettings;
                    }
                    GUILayout.EndHorizontal();
                }
                else if (ascentPathIdx == ascentType.CLASSIC)
                {
                    GUILayout.BeginHorizontal();                                                                                                                    // EditorStyles.toolbar);
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button11"), autopilot.showTargeting ? btActive : btNormal, GUILayout.ExpandWidth(true))) //TARG
                    {
                        autopilot.showTargeting = !autopilot.showTargeting;
                    }
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button12"), autopilot.showSettings ? btActive : btNormal, GUILayout.ExpandWidth(true)))  //OPTS
                    {
                        autopilot.showSettings = !autopilot.showSettings;
                    }
                    GUILayout.EndHorizontal();
                }

                if (autopilot.showTargeting)
                {
                    if (ascentPathIdx == ascentType.PVG)
                    {
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label1"), autopilot.desiredOrbitAltitude, "km"); //Target Periapsis
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label2"), pvgascent.desiredApoapsis, "km");      //Target Apoapsis:
                        if (pvgascent.desiredApoapsis >= 0 && pvgascent.desiredApoapsis < autopilot.desiredOrbitAltitude)
                        {
                            GUIStyle s = new GUIStyle(GUI.skin.label);
                            s.normal.textColor = Color.yellow;
                            GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label3"), s);//Ap < Pe: circularizing orbit
                        }
                        if (pvgascent.desiredApoapsis < 0)
                        {
                            GUIStyle s = new GUIStyle(GUI.skin.label);
                            s.normal.textColor = XKCDColors.Orange;
                            GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label4"), s);//Hyperbolic target orbit (neg Ap)
                        }
                    }
                    else
                    {
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label5"), autopilot.desiredOrbitAltitude, "km");//Orbit altitude
                    }

                    GUIStyle si = new GUIStyle(GUI.skin.label);
                    if (Math.Abs(desiredInclination) < Math.Abs(vesselState.latitude) - 2.001)
                    {
                        si.onHover.textColor = si.onNormal.textColor = si.normal.textColor = XKCDColors.Orange;
                    }
                    GUILayout.BeginHorizontal();
                    GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label6"), si, GUILayout.ExpandWidth(true));//Orbit inc.
                    desiredInclination.text = GUILayout.TextField(desiredInclination.text, GUILayout.ExpandWidth(true), GUILayout.Width(100));
                    GUILayout.Label("º", GUILayout.ExpandWidth(false));
                    if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button13")))//Current
                    {
                        desiredInclination.val = vesselState.latitude;
                    }
                    GUILayout.EndHorizontal();
                    GUILayout.BeginHorizontal();
                    if (Math.Abs(desiredInclination) < Math.Abs(vesselState.latitude) - 2.001)
                    {
                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label7", Math.Abs(vesselState.latitude) - Math.Abs(desiredInclination)), si);//inc {0:F1}º below current latitude
                    }
                    GUILayout.EndHorizontal();
                    autopilot.desiredInclination = desiredInclination;
                }

                if (autopilot.showGuidanceSettings)
                {
                    if (ascentPathIdx == ascentType.GRAVITYTURN)
                    {
                        GUILayout.BeginVertical();

                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label8"), gtascent.turnStartAltitude, "km");     //Turn start altitude:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label9"), gtascent.turnStartVelocity, "m/s");    //Turn start velocity:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label10"), gtascent.turnStartPitch, "deg");      //Turn start pitch:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label11"), gtascent.intermediateAltitude, "km"); //Intermediate altitude:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label12"), gtascent.holdAPTime, "s");            //Hold AP Time:

                        GUILayout.EndVertical();
                    }
                    else if (ascentPathIdx == ascentType.BREATHING_GT)
                    {
                        GUILayout.BeginVertical();

                        //GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label8"), bgtascent.turnStartAltitude, "km");//Turn start altitude:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label9"), bgtascent.turnStartVelocity, "m/s");      //Turn start velocity:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label10"), bgtascent.turnStartPitch, "deg");        //Turn start pitch:
                        GuiUtils.SimpleTextBox(Localizer.Format("speed for breathing mode:"), bgtascent.startBreathingSpeed, "m/s"); //speed for breathing mode:
                        GuiUtils.SimpleTextBox(Localizer.Format("TWR to throttle other:"), bgtascent.minTWRthrottle, "s");           //TWR to throttle other:

                        GUILayout.EndVertical();
                    }
                    else if (ascentPathIdx == ascentType.PVG)
                    {
                        GUILayout.BeginVertical();
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label13"), pvgascent.pitchStartVelocity, "m/s"); //Booster Pitch start:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label14"), pvgascent.pitchRate, "°/s");          //Booster Pitch rate:
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label15"), core.guidance.pvgInterval, "s");      //Guidance Interval:
                        if (core.guidance.pvgInterval < 1 || core.guidance.pvgInterval > 30)
                        {
                            GUIStyle s = new GUIStyle(GUI.skin.label);
                            s.normal.textColor = Color.yellow;
                            GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label16"), s);                              //Guidance intervals are limited to between 1s and 30s
                        }
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label17"), autopilot.limitQa, "Pa-rad"); //Qα limit
                        if (autopilot.limitQa < 100 || autopilot.limitQa > 4000)
                        {
                            GUIStyle s = new GUIStyle(GUI.skin.label);
                            s.normal.textColor = Color.yellow;

                            if (autopilot.limitQa < 100)
                            {
                                GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label18"), s);//Qα limit cannot be set to lower than 100 Pa-rad
                            }
                            else if (autopilot.limitQa > 10000)
                            {
                                GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label19"), s);//Qα limit cannot be set to higher than 10000 Pa-rad
                            }
                            else
                            {
                                GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label20"), s);//Qα limit is recommended to be 1000 to 4000 Pa-rad
                            }
                        }
                        pvgascent.omitCoast = GUILayout.Toggle(pvgascent.omitCoast, Localizer.Format("#MechJeb_Ascent_checkbox1"));//Omit Coast
                        GUILayout.EndVertical();
                    }
                }

                autopilot.limitQaEnabled = (ascentPathIdx == ascentType.PVG);    // this is mandatory for PVG

                if (autopilot.showSettings)
                {
                    ToggleAscentNavballGuidanceInfoItem();
                    if (ascentPathIdx != ascentType.PVG)
                    {
                        core.thrust.LimitToPreventOverheatsInfoItem();
                        //core.thrust.LimitToTerminalVelocityInfoItem();
                        core.thrust.LimitToMaxDynamicPressureInfoItem();
                        core.thrust.LimitAccelerationInfoItem();
                        core.thrust.LimitThrottleInfoItem();
                        core.thrust.LimiterMinThrottleInfoItem();
                        core.thrust.LimitElectricInfoItem();
                    }
                    else
                    {
                        core.thrust.LimitToPreventOverheatsInfoItem();
                        //core.thrust.LimitToTerminalVelocityInfoItem();
                        core.thrust.LimitToMaxDynamicPressureInfoItem();
                        //core.thrust.LimitAccelerationInfoItem();
                        //core.thrust.LimitThrottleInfoItem();
                        core.thrust.LimiterMinThrottleInfoItem();
                        //core.thrust.LimitElectricInfoItem();

                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label21")); //FIXME: g-limiter is down for maintenance
                        core.thrust.limitAcceleration       = false;
                        core.thrust.limitThrottle           = false;
                        core.thrust.limitToTerminalVelocity = false;
                        core.thrust.electricThrottle        = false;
                    }

                    GUILayout.BeginHorizontal();
                    autopilot.forceRoll = GUILayout.Toggle(autopilot.forceRoll, Localizer.Format("#MechJeb_Ascent_checkbox2"));//Force Roll
                    if (autopilot.forceRoll)
                    {
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label22"), autopilot.verticalRoll, "º", 30f); //climb
                        GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label23"), autopilot.turnRoll, "º", 30f);     //turn
                    }
                    GUILayout.EndHorizontal();

                    if (ascentPathIdx != ascentType.PVG)
                    {
                        GUILayout.BeginHorizontal();
                        GUIStyle s = new GUIStyle(GUI.skin.toggle);
                        if (autopilot.limitingAoA)
                        {
                            s.onHover.textColor = s.onNormal.textColor = Color.green;
                        }
                        autopilot.limitAoA    = GUILayout.Toggle(autopilot.limitAoA, Localizer.Format("#MechJeb_Ascent_checkbox3"), s, GUILayout.ExpandWidth(true));//Limit AoA to
                        autopilot.maxAoA.text = GUILayout.TextField(autopilot.maxAoA.text, GUILayout.Width(30));
                        GUILayout.Label("º (" + autopilot.currentMaxAoA.ToString("F1") + "°)", GUILayout.ExpandWidth(true));
                        GUILayout.EndHorizontal();

                        GUILayout.BeginHorizontal();
                        GUILayout.Space(25);
                        if (autopilot.limitAoA)
                        {
                            GUIStyle sl = new GUIStyle(GUI.skin.label);
                            if (autopilot.limitingAoA && vesselState.dynamicPressure < autopilot.aoALimitFadeoutPressure)
                            {
                                sl.normal.textColor = sl.hover.textColor = Color.green;
                            }
                            GuiUtils.SimpleTextBox(Localizer.Format("#MechJeb_Ascent_label24"), autopilot.aoALimitFadeoutPressure, "Pa", 50, sl);//Dynamic Pressure Fadeout
                        }
                        GUILayout.EndHorizontal();
                        autopilot.limitQaEnabled = false; // this is only for PVG
                    }

                    if (ascentPathIdx == ascentType.CLASSIC)
                    {
                        // corrective steering only applies to Classic
                        GUILayout.BeginHorizontal();
                        autopilot.correctiveSteering = GUILayout.Toggle(autopilot.correctiveSteering, Localizer.Format("#MechJeb_Ascent_checkbox4"), GUILayout.ExpandWidth(false));//Corrective steering
                        if (autopilot.correctiveSteering)
                        {
                            GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label25"), GUILayout.ExpandWidth(false));//Gain
                            autopilot.correctiveSteeringGain.text = GUILayout.TextField(autopilot.correctiveSteeringGain.text, GUILayout.Width(40));
                        }
                        GUILayout.EndHorizontal();
                    }

                    autopilot.autostage = GUILayout.Toggle(autopilot.autostage, Localizer.Format("#MechJeb_Ascent_checkbox5"));//Autostage
                    if (autopilot.autostage)
                    {
                        core.staging.AutostageSettingsInfoItem();
                    }

                    autopilot.autodeploySolarPanels = GUILayout.Toggle(autopilot.autodeploySolarPanels,
                                                                       Localizer.Format("#MechJeb_Ascent_checkbox6"));//Auto-deploy solar panels

                    autopilot.autoDeployAntennas = GUILayout.Toggle(autopilot.autoDeployAntennas,
                                                                    Localizer.Format("#MechJeb_Ascent_checkbox7"));//Auto-deploy antennas

                    GUILayout.BeginHorizontal();
                    core.node.autowarp = GUILayout.Toggle(core.node.autowarp, Localizer.Format("#MechJeb_Ascent_checkbox8"));//Auto-warp
                    if (ascentPathIdx != ascentType.PVG)
                    {
                        autopilot.skipCircularization = GUILayout.Toggle(autopilot.skipCircularization, Localizer.Format("#MechJeb_Ascent_checkbox9"));//Skip Circularization
                    }
                    else
                    {
                        // skipCircularization is always true for Optimizer
                        autopilot.skipCircularization = true;
                    }
                    GUILayout.EndHorizontal();
                }

                if (autopilot.showStatus)
                {
                    if (ascentPathIdx == ascentType.PVG)
                    {
                        if (core.guidance.solution != null)
                        {
                            for (int i = core.guidance.solution.num_segments; i > 0; i--)
                            {
                                GUILayout.Label(String.Format("{0}: {1}", i, core.guidance.solution.ArcString(vesselState.time, i - 1)));
                            }
                        }

                        GUILayout.BeginHorizontal();
                        GUILayout.Label(String.Format("vgo: {0:F1}", core.guidance.vgo), GUILayout.Width(100));
                        GUILayout.Label(String.Format("heading: {0:F1}", core.guidance.heading), GUILayout.Width(100));
                        GUILayout.EndHorizontal();
                        GUILayout.BeginHorizontal();
                        GUILayout.Label(String.Format("tgo: {0:F3}", core.guidance.tgo), GUILayout.Width(100));
                        GUILayout.Label(String.Format("pitch: {0:F1}", core.guidance.pitch), GUILayout.Width(100));
                        GUILayout.EndHorizontal();
                        GUILayout.BeginHorizontal();
                        GUIStyle si = new GUIStyle(GUI.skin.label);
                        if (core.guidance.isStable())
                        {
                            si.onHover.textColor = si.onNormal.textColor = si.normal.textColor = XKCDColors.Green;
                        }
                        else if (core.guidance.isInitializing() || core.guidance.status == PVGStatus.FINISHED)
                        {
                            si.onHover.textColor = si.onNormal.textColor = si.normal.textColor = XKCDColors.Orange;
                        }
                        else
                        {
                            si.onHover.textColor = si.onNormal.textColor = si.normal.textColor = XKCDColors.Red;
                        }
                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label26") + core.guidance.status, si);//Guidance Status:
                        GUILayout.EndHorizontal();
                        GUILayout.BeginHorizontal();
                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label27") + core.guidance.successful_converges, GUILayout.Width(100)); //converges:
                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label28") + core.guidance.last_lm_status, GUILayout.Width(100));       //status:
                        GUILayout.EndHorizontal();
                        GUILayout.BeginHorizontal();
                        GUILayout.Label("n: " + core.guidance.last_lm_iteration_count + "(" + core.guidance.max_lm_iteration_count + ")", GUILayout.Width(100));
                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label29") + GuiUtils.TimeToDHMS(core.guidance.staleness));//staleness:
                        GUILayout.EndHorizontal();
                        GUILayout.BeginHorizontal();
                        GUILayout.Label(String.Format("znorm: {0:G5}", core.guidance.last_znorm));
                        GUILayout.EndHorizontal();
                        if (core.guidance.last_failure_cause != null)
                        {
                            GUIStyle s = new GUIStyle(GUI.skin.label);
                            s.normal.textColor = Color.red;
                            GUILayout.BeginHorizontal();
                            GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label30") + core.guidance.last_failure_cause, s);//LAST FAILURE:
                            GUILayout.EndHorizontal();
                        }

                        if (vessel.situation != Vessel.Situations.LANDED && vessel.situation != Vessel.Situations.PRELAUNCH && vessel.situation != Vessel.Situations.SPLASHED)
                        {
                            double m0     = atmoStats[vessel.currentStage].startMass;
                            double thrust = atmoStats[vessel.currentStage].startThrust;

                            if (Math.Abs(vesselState.mass - m0) / m0 > 0.01)
                            {
                                GUIStyle s = new GUIStyle(GUI.skin.label);
                                s.normal.textColor = Color.yellow;
                                GUILayout.BeginHorizontal();
                                GUILayout.Label(String.Format(Localizer.Format("#MechJeb_Ascent_label31") + "{0:F1}%", (vesselState.mass - m0) / m0 * 100.0), s);//MASS IS OFF BY
                                GUILayout.EndHorizontal();
                            }

                            if (Math.Abs(vesselState.thrustCurrent - thrust) / thrust > 0.01)
                            {
                                GUIStyle s = new GUIStyle(GUI.skin.label);
                                s.normal.textColor = Color.yellow;
                                GUILayout.BeginHorizontal();
                                GUILayout.Label(String.Format(Localizer.Format("#MechJeb_Ascent_label32") + "{0:F1}%", (vesselState.thrustCurrent - thrust) / thrust * 100.0), s);//THRUST IS OFF BY
                                GUILayout.EndHorizontal();
                            }
                        }
                    }
                }

                if (vessel.LandedOrSplashed)
                {
                    if (core.target.NormalTargetExists)
                    {
                        if (core.node.autowarp)
                        {
                            GUILayout.BeginHorizontal();
                            GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label33"), GUILayout.ExpandWidth(true));    //Launch countdown:
                            autopilot.warpCountDown.text = GUILayout.TextField(autopilot.warpCountDown.text,
                                                                               GUILayout.Width(60));
                            GUILayout.Label("s", GUILayout.ExpandWidth(false));
                            GUILayout.EndHorizontal();
                        }
                        if (!launchingToPlane && !launchingToRendezvous && !launchingToInterplanetary)
                        {
                            // disable plane/rendezvous/interplanetary for now
                            if (ascentPathIdx != ascentType.PVG)
                            {
                                GUILayout.BeginHorizontal();
                                if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button14"), GUILayout.ExpandWidth(false)))    //Launch to rendezvous:
                                {
                                    launchingToRendezvous = true;
                                    autopilot.StartCountdown(vesselState.time +
                                                             LaunchTiming.TimeToPhaseAngle(autopilot.launchPhaseAngle,
                                                                                           mainBody, vesselState.longitude, core.target.TargetOrbit));
                                }
                                autopilot.launchPhaseAngle.text = GUILayout.TextField(autopilot.launchPhaseAngle.text,
                                                                                      GUILayout.Width(60));
                                GUILayout.Label("º", GUILayout.ExpandWidth(false));
                                GUILayout.EndHorizontal();
                            }

                            GUILayout.BeginHorizontal();
                            if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button15"), GUILayout.ExpandWidth(false)))    //Launch into plane of target
                            {
                                launchingToPlane = true;

                                autopilot.StartCountdown(vesselState.time +
                                                         LaunchTiming.TimeToPlane(autopilot.launchLANDifference,
                                                                                  mainBody, vesselState.latitude, vesselState.longitude,
                                                                                  core.target.TargetOrbit));
                            }
                            autopilot.launchLANDifference.text = GUILayout.TextField(
                                autopilot.launchLANDifference.text, GUILayout.Width(60));
                            GUILayout.Label("º", GUILayout.ExpandWidth(false));
                            GUILayout.EndHorizontal();

                            if (core.target.TargetOrbit.referenceBody == orbit.referenceBody.referenceBody)
                            {
                                if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button16")))    //Launch at interplanetary window
                                {
                                    launchingToInterplanetary = true;
                                    //compute the desired launch date
                                    OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(mainBody.orbit,
                                                                                              core.target.TargetOrbit, vesselState.time, out interplanetaryWindowUT);
                                    double desiredOrbitPeriod = 2 * Math.PI *
                                                                Math.Sqrt(
                                        Math.Pow(mainBody.Radius + autopilot.desiredOrbitAltitude, 3)
                                        / mainBody.gravParameter);
                                    //launch just before the window, but don't try to launch in the past
                                    interplanetaryWindowUT -= 3 * desiredOrbitPeriod;
                                    interplanetaryWindowUT  = Math.Max(vesselState.time + autopilot.warpCountDown,
                                                                       interplanetaryWindowUT);
                                    autopilot.StartCountdown(interplanetaryWindowUT);
                                }
                            }
                        }
                    }
                    else
                    {
                        launchingToInterplanetary = launchingToPlane = launchingToRendezvous = false;
                        GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label34"));    //Select a target for a timed launch.
                    }

                    if (launchingToInterplanetary || launchingToPlane || launchingToRendezvous)
                    {
                        string message = "";
                        if (launchingToInterplanetary)
                        {
                            message = Localizer.Format("#MechJeb_Ascent_msg1");    //Launching at interplanetary window
                        }
                        else if (launchingToPlane)
                        {
                            desiredInclination  = MuUtils.Clamp(core.target.TargetOrbit.inclination, Math.Abs(vesselState.latitude), 180 - Math.Abs(vesselState.latitude));
                            desiredInclination *=
                                Math.Sign(Vector3d.Dot(core.target.TargetOrbit.SwappedOrbitNormal(),
                                                       Vector3d.Cross(vesselState.CoM - mainBody.position, mainBody.transform.up)));
                            message = Localizer.Format("#MechJeb_Ascent_msg2");    //Launching to target plane
                        }
                        else if (launchingToRendezvous)
                        {
                            message = "#MechJeb_Ascent_msg3";    //Launching to rendezvous
                        }

                        if (autopilot.tMinus > 3 * vesselState.deltaT)
                        {
                            message += ": T-" + GuiUtils.TimeToDHMS(autopilot.tMinus, 1);
                        }

                        GUILayout.Label(message);

                        if (GUILayout.Button(Localizer.Format("#MechJeb_Ascent_button17")))//Abort
                        {
                            launchingToInterplanetary =
                                launchingToPlane      = launchingToRendezvous = autopilot.timedLaunch = false;
                        }
                    }
                }

                if (autopilot.enabled)
                {
                    GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label35") + autopilot.status);//Autopilot status:
                }
                if (core.DeactivateControl)
                {
                    GUIStyle s = new GUIStyle(GUI.skin.label);
                    s.normal.textColor = Color.red;
                    GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label36"), s);//CONTROL DISABLED (AVIONICS)
                }
            }

            if (!vessel.patchedConicsUnlocked() && ascentPathIdx != ascentType.PVG)
            {
                GUILayout.Label(Localizer.Format("#MechJeb_Ascent_label37"));//"Warning: MechJeb is unable to circularize without an upgraded Tracking Station."
            }

            GUILayout.BeginHorizontal();
            autopilot.ascentPathIdxPublic = (ascentType)GuiUtils.ComboBox.Box((int)autopilot.ascentPathIdxPublic, autopilot.ascentPathList, this);
            GUILayout.EndHorizontal();

            if (autopilot.ascentMenu != null)
            {
                autopilot.ascentMenu.enabled = GUILayout.Toggle(autopilot.ascentMenu.enabled, Localizer.Format("#MechJeb_Ascent_checkbox10"));                              //Edit ascent path
            }
            GUILayout.EndVertical();

            base.WindowGUI(windowID);
        }
        protected override void WindowGUI(int windowID)
        {
            GUILayout.BeginVertical();

            bool showingGuidance = (core.target.Target != null && core.target.Name == TARGET_NAME);

            if (showingGuidance)
            {
                GUILayout.Label("The purple circle on the navball points along the ascent path.");
                if (GUILayout.Button("Stop showing navball guidance"))
                {
                    core.target.Unset();
                }
            }
            else if (GUILayout.Button("Show navball ascent path guidance"))
            {
                core.target.SetDirectionTarget(TARGET_NAME);
            }

            if (autopilot != null)
            {
                if (autopilot.enabled)
                {
                    if (GUILayout.Button("Disengage autopilot"))
                    {
                        autopilot.users.Remove(this);
                    }
                }
                else
                {
                    if (GUILayout.Button("Engage autopilot"))
                    {
                        autopilot.users.Add(this);
                    }
                }

                ascentPath = autopilot.ascentPath;

                GuiUtils.SimpleTextBox("Orbit altitude", autopilot.desiredOrbitAltitude, "km");
                autopilot.desiredInclination = desiredInclination;
            }

            GuiUtils.SimpleTextBox("Orbit inclination", desiredInclination, "º");

            core.thrust.LimitToPreventOverheatsInfoItem();
            core.thrust.LimitToTerminalVelocityInfoItem();
            core.thrust.LimitAccelerationInfoItem();
            core.thrust.LimitThrottleInfoItem();
            GUILayout.BeginHorizontal();
            autopilot.forceRoll = GUILayout.Toggle(autopilot.forceRoll, "Force Roll");
            if (autopilot.forceRoll)
            {
                GuiUtils.SimpleTextBox("climb", autopilot.verticalRoll, "º", 30f);
                GuiUtils.SimpleTextBox("turn", autopilot.turnRoll, "º", 30f);
            }
            GUILayout.EndHorizontal();
            GUILayout.BeginHorizontal();
            GUIStyle s = new GUIStyle(GUI.skin.toggle);

            if (autopilot.limitingAoA)
            {
                s.onHover.textColor = s.onNormal.textColor = Color.green;
            }
            autopilot.limitAoA    = GUILayout.Toggle(autopilot.limitAoA, "Limit AoA to", s, GUILayout.ExpandWidth(true));
            autopilot.maxAoA.text = GUILayout.TextField(autopilot.maxAoA.text, GUILayout.Width(30));
            GUILayout.Label("º (" + autopilot.currentMaxAoA.ToString("F1") + "°)", GUILayout.ExpandWidth(true));
            GUILayout.EndHorizontal();

            GUILayout.BeginHorizontal();
            GUILayout.Space(25);
            if (autopilot.limitAoA)
            {
                GUIStyle sl = new GUIStyle(GUI.skin.label);
                if (autopilot.limitingAoA && vesselState.dynamicPressure < autopilot.aoALimitFadeoutPressure)
                {
                    sl.normal.textColor = sl.hover.textColor = Color.green;
                }
                GuiUtils.SimpleTextBox("Dynamic Pressure Fadeout", autopilot.aoALimitFadeoutPressure, "pa", 50, sl);
            }
            GUILayout.EndHorizontal();

            autopilot.correctiveSteering = GUILayout.Toggle(autopilot.correctiveSteering, "Corrective steering");

            autopilot.autostage = GUILayout.Toggle(autopilot.autostage, "Autostage");
            if (autopilot.autostage)
            {
                core.staging.AutostageSettingsInfoItem();
            }

            autopilot.autodeploySolarPanels = GUILayout.Toggle(autopilot.autodeploySolarPanels, "Auto-deploy solar panels");

            core.node.autowarp = GUILayout.Toggle(core.node.autowarp, "Auto-warp");

            if (autopilot != null && vessel.LandedOrSplashed)
            {
                if (core.target.NormalTargetExists)
                {
                    if (core.node.autowarp)
                    {
                        GUILayout.BeginHorizontal();
                        GUILayout.Label("Launch countdown:", GUILayout.ExpandWidth(true));
                        autopilot.warpCountDown.text = GUILayout.TextField(autopilot.warpCountDown.text, GUILayout.Width(60));
                        GUILayout.Label("s", GUILayout.ExpandWidth(false));
                        GUILayout.EndHorizontal();
                    }
                    if (!launchingToPlane && !launchingToRendezvous && !launchingToInterplanetary)
                    {
                        GUILayout.BeginHorizontal();
                        if (GUILayout.Button("Launch to rendezvous:", GUILayout.ExpandWidth(false)))
                        {
                            launchingToRendezvous = true;
                            autopilot.StartCountdown(vesselState.time + LaunchTiming.TimeToPhaseAngle(autopilot.launchPhaseAngle, mainBody, vesselState.longitude, core.target.TargetOrbit));
                        }
                        autopilot.launchPhaseAngle.text = GUILayout.TextField(autopilot.launchPhaseAngle.text, GUILayout.Width(60));
                        GUILayout.Label("º", GUILayout.ExpandWidth(false));
                        GUILayout.EndHorizontal();

                        if (GUILayout.Button("Launch into plane of target"))
                        {
                            launchingToPlane = true;
                            autopilot.StartCountdown(vesselState.time +
                                                     LaunchTiming.TimeToPlane(mainBody, vesselState.latitude, vesselState.longitude, core.target.TargetOrbit));
                        }
                        if (core.target.TargetOrbit.referenceBody == orbit.referenceBody.referenceBody)
                        {
                            if (GUILayout.Button("Launch at interplanetary window"))
                            {
                                launchingToInterplanetary = true;
                                //compute the desired launch date
                                OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(mainBody.orbit, core.target.TargetOrbit, vesselState.time, out interplanetaryWindowUT);
                                double desiredOrbitPeriod = 2 * Math.PI * Math.Sqrt(Math.Pow(mainBody.Radius + autopilot.desiredOrbitAltitude, 3) / mainBody.gravParameter);
                                //launch just before the window, but don't try to launch in the past
                                interplanetaryWindowUT -= 3 * desiredOrbitPeriod;
                                interplanetaryWindowUT  = Math.Max(vesselState.time + autopilot.warpCountDown, interplanetaryWindowUT);
                                autopilot.StartCountdown(interplanetaryWindowUT);
                            }
                        }
                    }
                }
                else
                {
                    launchingToInterplanetary = launchingToPlane = launchingToRendezvous = false;
                    GUILayout.Label("Select a target for a timed launch.");
                }

                if (launchingToInterplanetary || launchingToPlane || launchingToRendezvous)
                {
                    string message = "";
                    if (launchingToInterplanetary)
                    {
                        message = "Launching at interplanetary window";
                    }
                    else if (launchingToPlane)
                    {
                        desiredInclination  = core.target.TargetOrbit.inclination;
                        desiredInclination *= Math.Sign(Vector3d.Dot(core.target.TargetOrbit.SwappedOrbitNormal(), Vector3d.Cross(vesselState.CoM - mainBody.position, mainBody.transform.up)));
                        message             = "Launching to target plane";
                    }
                    else if (launchingToRendezvous)
                    {
                        message = "Launching to rendezvous";
                    }

                    if (autopilot.tMinus > 3 * vesselState.deltaT)
                    {
                        message += ": T-" + GuiUtils.TimeToDHMS(autopilot.tMinus, 1);
                    }

                    GUILayout.Label(message);

                    if (GUILayout.Button("Abort"))
                    {
                        launchingToInterplanetary = launchingToPlane = launchingToRendezvous = autopilot.timedLaunch = false;
                    }
                }
            }

            if (autopilot != null && autopilot.enabled)
            {
                GUILayout.Label("Autopilot status: " + autopilot.status);
            }

            if (!vessel.patchedConicsUnlocked())
            {
                GUILayout.Label("Warning: MechJeb is unable to circularize without an upgraded Tracking Station.");
            }

            MechJebModuleAscentPathEditor editor = core.GetComputerModule <MechJebModuleAscentPathEditor>();

            if (editor != null)
            {
                editor.enabled = GUILayout.Toggle(editor.enabled, "Edit ascent path");
            }

            GUILayout.EndVertical();

            base.WindowGUI(windowID);
        }
        protected override void WindowGUI(int windowID)
        {
            GUILayout.BeginVertical();

            bool showingGuidance = (core.target.Target != null && core.target.Name == TARGET_NAME);

            if (showingGuidance)
            {
                GUILayout.Label("The purple circle on the navball points along the ascent path.");
                if (GUILayout.Button("Stop showing navball guidance"))
                {
                    core.target.Unset();
                }
            }
            else if (GUILayout.Button("Show navball ascent path guidance"))
            {
                core.target.SetDirectionTarget(TARGET_NAME);
            }

            if (autopilot != null)
            {
                if (autopilot.enabled)
                {
                    if (GUILayout.Button("Disengage autopilot"))
                    {
                        autopilot.users.Remove(this);
                    }
                }
                else
                {
                    if (GUILayout.Button("Engage autopilot"))
                    {
                        autopilot.users.Add(this);
                    }
                }

                ascentPath = autopilot.ascentPath;

                GuiUtils.SimpleTextBox("Orbit altitude", autopilot.desiredOrbitAltitude, "km");
                autopilot.desiredInclination = desiredInclination;
            }

            GuiUtils.SimpleTextBox("Orbit inclination", desiredInclination, "º");

            core.thrust.LimitToPreventOverheatsInfoItem();
            core.thrust.LimitToTerminalVelocityInfoItem();
            core.thrust.LimitAccelerationInfoItem();
            core.thrust.LimitThrottleInfoItem();
            autopilot.correctiveSteering = GUILayout.Toggle(autopilot.correctiveSteering, "Corrective steering");

            autopilot.autostage = GUILayout.Toggle(autopilot.autostage, "Autostage");
            if (autopilot.autostage)
            {
                core.staging.AutostageSettingsInfoItem();
            }

            core.node.autowarp = GUILayout.Toggle(core.node.autowarp, "Auto-warp");

            if (autopilot != null && vessel.LandedOrSplashed)
            {
                if (core.target.NormalTargetExists)
                {
                    if (core.node.autowarp)
                    {
                        GUILayout.BeginHorizontal();
                        GUILayout.Label("Launch countdown:", GUILayout.ExpandWidth(true));
                        autopilot.warpCountDown.text = GUILayout.TextField(autopilot.warpCountDown.text, GUILayout.Width(60));
                        GUILayout.Label("s", GUILayout.ExpandWidth(false));
                        GUILayout.EndHorizontal();
                    }
                    if (!launchingToPlane && !launchingToRendezvous && !launchingToInterplanetary)
                    {
                        GUILayout.BeginHorizontal();
                        if (GUILayout.Button("Launch to rendezvous:", GUILayout.ExpandWidth(false)))
                        {
                            launchingToRendezvous = true;
                            lastTMinus            = 999;
                        }
                        autopilot.launchPhaseAngle.text = GUILayout.TextField(autopilot.launchPhaseAngle.text, GUILayout.Width(60));
                        GUILayout.Label("º", GUILayout.ExpandWidth(false));
                        GUILayout.EndHorizontal();

                        if (GUILayout.Button("Launch into plane of target"))
                        {
                            launchingToPlane = true;
                            lastTMinus       = 999;
                        }
                        if (core.target.TargetOrbit.referenceBody == orbit.referenceBody.referenceBody)
                        {
                            if (GUILayout.Button("Launch at interplanetary window"))
                            {
                                launchingToInterplanetary = true;
                                lastTMinus = 999;
                                //compute the desired launch date
                                OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(mainBody.orbit, core.target.TargetOrbit, vesselState.time, out interplanetaryWindowUT);
                                double desiredOrbitPeriod = 2 * Math.PI * Math.Sqrt(Math.Pow(mainBody.Radius + autopilot.desiredOrbitAltitude, 3) / mainBody.gravParameter);
                                //launch just before the window, but don't try to launch in the past
                                interplanetaryWindowUT -= 3 * desiredOrbitPeriod;
                                interplanetaryWindowUT  = Math.Max(vesselState.time + autopilot.warpCountDown, interplanetaryWindowUT);
                            }
                        }
                    }
                }
                else
                {
                    launchingToInterplanetary = launchingToPlane = launchingToRendezvous = false;
                    GUILayout.Label("Select a target for a timed launch.");
                }

                if (launchingToInterplanetary || launchingToPlane || launchingToRendezvous)
                {
                    double tMinus  = 0;
                    string message = "";
                    if (launchingToInterplanetary)
                    {
                        tMinus  = interplanetaryWindowUT - vesselState.time;
                        message = "Launching at interplanetary window";
                    }
                    else if (launchingToPlane)
                    {
                        tMinus              = LaunchTiming.TimeToPlane(mainBody, vesselState.latitude, vesselState.longitude, core.target.TargetOrbit);
                        desiredInclination  = core.target.TargetOrbit.inclination;
                        desiredInclination *= Math.Sign(Vector3d.Dot(core.target.TargetOrbit.SwappedOrbitNormal(), Vector3d.Cross(vesselState.CoM - mainBody.position, mainBody.transform.up)));
                        message             = "Launching to target plane";
                    }
                    else if (launchingToRendezvous)
                    {
                        tMinus  = LaunchTiming.TimeToPhaseAngle(autopilot.launchPhaseAngle, mainBody, vesselState.longitude, core.target.TargetOrbit);
                        message = "Launching to rendezvous";
                    }

                    double launchTime = vesselState.time + tMinus;

                    if (tMinus < 3 * vesselState.deltaT || (tMinus > 10.0 && lastTMinus < 1.0))
                    {
                        if (autopilot.enabled)
                        {
                            Staging.ActivateNextStage();
                        }
                        launchingToInterplanetary = launchingToPlane = launchingToRendezvous = false;
                    }
                    else
                    {
                        message += ": T-" + MuUtils.ToSI(tMinus, 0) + "s";
                        if (autopilot.enabled && core.node.autowarp)
                        {
                            core.warp.WarpToUT(launchTime - autopilot.warpCountDown);
                        }
                    }

                    GUILayout.Label(message);

                    lastTMinus = tMinus;

                    if (GUILayout.Button("Abort"))
                    {
                        launchingToInterplanetary = launchingToPlane = launchingToRendezvous = false;
                    }
                }
            }

            if (autopilot != null && autopilot.enabled)
            {
                GUILayout.Label("Autopilot status: " + autopilot.status);
            }

            MechJebModuleAscentPathEditor editor = core.GetComputerModule <MechJebModuleAscentPathEditor>();

            if (editor != null)
            {
                editor.enabled = GUILayout.Toggle(editor.enabled, "Edit ascent path");
            }

            GUILayout.EndVertical();

            base.WindowGUI(windowID);
        }
        protected override void WindowGUI(int windowID)
        {
            if (!core.target.NormalTargetExists)
            {
                GUILayout.Label("Select a target to rendezvous with.");
                base.WindowGUI(windowID);
                return;
            }

            if (core.target.Orbit.referenceBody != orbit.referenceBody)
            {
                GUILayout.Label("Rendezvous target must be in the same sphere of influence.");
                base.WindowGUI(windowID);
                return;
            }

            GUILayout.BeginVertical();

            step = (Step)GuiUtils.ArrowSelector((int)step, numSteps, stepStrings[(int)step]);

            double leadTime = 30;

            switch (step)
            {
            case Step.AlignPlanes:

                GUILayout.Label("First, bring your relative inclination to zero by aligning your orbital plane with the target's orbital plane:");
                GUILayout.Label("Relative inclination: " + orbit.RelativeInclination(core.target.Orbit).ToString("F2") + "º");

                if (GUILayout.Button("Align Planes"))
                {
                    double   UT;
                    Vector3d dV;
                    if (orbit.AscendingNodeExists(core.target.Orbit))
                    {
                        dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.Orbit, vesselState.time, out UT);
                    }
                    else
                    {
                        dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.Orbit, vesselState.time, out UT);
                    }
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }
                break;

            case Step.PhasingOrbit:

                double phasingOrbitRadius = 0.9 * core.target.Orbit.PeR;
                if (phasingOrbitRadius < orbit.referenceBody.Radius + orbit.referenceBody.RealMaxAtmosphereAltitude())
                {
                    phasingOrbitRadius = 1.1 * core.target.Orbit.ApR;
                }
                double phasingOrbitAltitude = phasingOrbitRadius - mainBody.Radius;
                GUILayout.Label("Next, establish a circular phasing orbit close to the target orbit.");
                GUILayout.Label("Target orbit: " + MuUtils.ToSI(core.target.Orbit.PeA, 3) + "m x " + MuUtils.ToSI(core.target.Orbit.ApA, 3) + "m");
                GUILayout.Label("Suggested phasing orbit: " + MuUtils.ToSI(phasingOrbitAltitude, 3) + "m x " + MuUtils.ToSI(phasingOrbitAltitude, 3) + "m");
                GUILayout.Label("Current orbit: " + MuUtils.ToSI(orbit.PeA, 3) + "m x " + MuUtils.ToSI(orbit.ApA, 3) + "m");

                if (GUILayout.Button("Establish Phasing Orbit"))
                {
                    if (orbit.ApR < phasingOrbitRadius)
                    {
                        double   UT1 = vesselState.time + leadTime;
                        Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                        vessel.PlaceManeuverNode(orbit, dV1, UT1);
                        Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                        double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                        Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                        vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                    }
                    else if (orbit.PeR > phasingOrbitRadius)
                    {
                        double   UT1 = vesselState.time + leadTime;
                        Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                        vessel.PlaceManeuverNode(orbit, dV1, UT1);
                        Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                        double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                        Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                        vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                    }
                    else
                    {
                        double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                        Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                        vessel.PlaceManeuverNode(orbit, dV, UT);
                    }
                }

                break;

            case Step.Transfer:

                GUILayout.Label("Once in the phasing orbit, transfer to the target orbit at just the right time to intercept the target:");

                if (GUILayout.Button("Intercept with Hohmann transfer"))
                {
                    double   UT;
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.Orbit, vesselState.time, out UT);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }

                double closestApproachTime = orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time);

                GUILayout.Label("Once on a transfer trajectory, match velocities at closest approach:");
                GUILayout.Label("Time until closest approach: " + GuiUtils.TimeToDHMS(closestApproachTime - vesselState.time));
                GUILayout.Label("Separation at closest approach: " + MuUtils.ToSI(orbit.Separation(core.target.Orbit, closestApproachTime), 0) + "m");

                if (GUILayout.Button("Match velocities at closest approach"))
                {
                    double   UT = closestApproachTime;
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }

                break;

            case Step.GetCloser:
                GUILayout.Label("If you aren't close enough after matching velocities, thrust gently toward the target:");

                if (GUILayout.Button("Get closer"))
                {
                    double   UT          = vesselState.time;
                    double   interceptUT = UT + 100;
                    Vector3d dV          = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.Orbit, interceptUT, 10);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }

                GUILayout.Label("Then match velocities again at closest approach");

                break;
            }

            GUILayout.EndVertical();

            MechJebModuleRendezvousAutopilot autopilot = core.GetComputerModule <MechJebModuleRendezvousAutopilot>();

            if (autopilot != null)
            {
                bool active = GUILayout.Toggle(autopilot.enabled, "Autopilot enable");
                if (autopilot.enabled != active)
                {
                    if (active)
                    {
                        autopilot.users.Add(this);
                    }
                    else
                    {
                        autopilot.users.Remove(this);
                    }
                }
                if (autopilot.enabled)
                {
                    GUILayout.Label("Status: " + autopilot.status);
                }
            }

            base.WindowGUI(windowID);
        }
        protected override void WindowGUI(int windowID)
        {
            if (!core.target.NormalTargetExists)
            {
                GUILayout.Label(Localizer.Format("#MechJeb_RZplan_label1"));//"Select a target to rendezvous with."
                base.WindowGUI(windowID);
                return;
            }

            if (core.target.TargetOrbit.referenceBody != orbit.referenceBody)
            {
                GUILayout.Label(Localizer.Format("#MechJeb_RZplan_label2"));//"Rendezvous target must be in the same sphere of influence."
                base.WindowGUI(windowID);
                return;
            }

            GUILayout.BeginVertical();

            //Information readouts:

            GuiUtils.SimpleLabel(Localizer.Format("#MechJeb_RZplan_label3"), core.target.Name);//"Rendezvous target"

            const double leadTime = 30;

            GuiUtils.SimpleLabel(Localizer.Format("#MechJeb_RZplan_label4"), MuUtils.ToSI(core.target.TargetOrbit.PeA, 3) + "m x " + MuUtils.ToSI(core.target.TargetOrbit.ApA, 3) + "m"); //"Target orbit"
            GuiUtils.SimpleLabel(Localizer.Format("#MechJeb_RZplan_label5"), MuUtils.ToSI(orbit.PeA, 3) + "m x " + MuUtils.ToSI(orbit.ApA, 3) + "m");                                     //"Current orbit"
            GuiUtils.SimpleLabel(Localizer.Format("#MechJeb_RZplan_label6"), orbit.RelativeInclination(core.target.TargetOrbit).ToString("F2") + "º");                                    //"Relative inclination"

            double closestApproachTime = orbit.NextClosestApproachTime(core.target.TargetOrbit, vesselState.time);

            GuiUtils.SimpleLabel(Localizer.Format("#MechJeb_RZplan_label7"), GuiUtils.TimeToDHMS(closestApproachTime - vesselState.time));                           //"Time until closest approach"
            GuiUtils.SimpleLabel(Localizer.Format("#MechJeb_RZplan_label8"), MuUtils.ToSI(orbit.Separation(core.target.TargetOrbit, closestApproachTime), 0) + "m"); //"Separation at closest approach"


            //Maneuver planning buttons:

            if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button1")))//"Align Planes"
            {
                double   UT;
                Vector3d dV;
                if (orbit.AscendingNodeExists(core.target.TargetOrbit))
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                }
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }


            GUILayout.BeginHorizontal();
            if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button2")))//"Establish new orbit at"
            {
                double phasingOrbitRadius = phasingOrbitAltitude + mainBody.Radius;

                vessel.RemoveAllManeuverNodes();
                if (orbit.ApR < phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + leadTime;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else if (orbit.PeR > phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + leadTime;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else
                {
                    double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }
            }
            phasingOrbitAltitude.text = GUILayout.TextField(phasingOrbitAltitude.text, GUILayout.Width(70));
            GUILayout.Label("km", GUILayout.ExpandWidth(false));
            GUILayout.EndHorizontal();

            if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button3")))//"Intercept with Hohmann transfer"
            {
                double   UT;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button4")))//"Match velocities at closest approach"
            {
                double   UT = closestApproachTime;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.TargetOrbit);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button5")))//"Get closer"
            {
                double   UT = vesselState.time;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.TargetOrbit, 100, 10);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            if (core.node != null)
            {
                if (vessel.patchedConicSolver.maneuverNodes.Any() && !core.node.enabled)
                {
                    if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button6")))//"Execute next node"
                    {
                        core.node.ExecuteOneNode(this);
                    }

                    if (vessel.patchedConicSolver.maneuverNodes.Count > 1)
                    {
                        if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button7")))//"Execute all nodes"
                        {
                            core.node.ExecuteAllNodes(this);
                        }
                    }
                }
                else if (core.node.enabled)
                {
                    if (GUILayout.Button(Localizer.Format("#MechJeb_RZplan_button8")))//"Abort node execution"
                    {
                        core.node.Abort();
                    }
                }

                GUILayout.BeginHorizontal();
                core.node.autowarp = GUILayout.Toggle(core.node.autowarp, Localizer.Format("#MechJeb_RZplan_checkbox"), GUILayout.ExpandWidth(true)); //"Auto-warp"
                GUILayout.Label(Localizer.Format("#MechJeb_RZplan_label9"), GUILayout.ExpandWidth(false));                                            //"Tolerance:"
                core.node.tolerance.text = GUILayout.TextField(core.node.tolerance.text, GUILayout.Width(35), GUILayout.ExpandWidth(false));
                if (GUILayout.Button("+", GUILayout.ExpandWidth(false)))
                {
                    core.node.tolerance.val += 0.1;
                }
                if (GUILayout.Button("-", GUILayout.ExpandWidth(false)))
                {
                    core.node.tolerance.val -= core.node.tolerance.val > 0.1 ? 0.1 : 0.0;
                }
                if (GUILayout.Button("R", GUILayout.ExpandWidth(false)))
                {
                    core.node.tolerance.val = 0.1;
                }
                GUILayout.Label("m/s", GUILayout.ExpandWidth(false));
                GUILayout.EndHorizontal();
            }

            GUILayout.EndVertical();

            base.WindowGUI(windowID);
        }
Пример #11
0
        void MakeNodeForOperation(Orbit o, double UT)
        {
            Vector3d dV = Vector3d.zero;

            double bodyRadius = o.referenceBody.Radius;

            switch (operation)
            {
            case Operation.CIRCULARIZE:
                dV = OrbitalManeuverCalculator.DeltaVToCircularize(o, UT);
                break;

            case Operation.ELLIPTICIZE:
                dV = OrbitalManeuverCalculator.DeltaVToEllipticize(o, UT, newPeA + bodyRadius, newApA + bodyRadius);
                break;

            case Operation.PERIAPSIS:
                dV = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(o, UT, newPeA + bodyRadius);
                break;

            case Operation.APOAPSIS:
                dV = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(o, UT, newApA + bodyRadius);
                break;

            case Operation.INCLINATION:
                dV = OrbitalManeuverCalculator.DeltaVToChangeInclination(o, UT, newInc);
                break;

            case Operation.PLANE:
                if (timeReference == TimeReference.REL_ASCENDING)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(o, core.target.Orbit, UT, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(o, core.target.Orbit, UT, out UT);
                }
                break;

            case Operation.TRANSFER:
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(o, core.target.Orbit, UT, out UT);
                break;

            case Operation.MOON_RETURN:
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForMoonReturnEjection(o, UT, o.referenceBody.referenceBody.Radius + moonReturnAltitude, out UT);
                break;

            case Operation.COURSE_CORRECTION:
                CelestialBody targetBody = core.target.Target as CelestialBody;
                if (targetBody != null)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeForCheapestCourseCorrection(o, UT, core.target.Orbit, targetBody, targetBody.Radius + courseCorrectFinalPeA, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeForCheapestCourseCorrection(o, UT, core.target.Orbit, out UT);
                }
                break;

            case Operation.INTERPLANETARY_TRANSFER:
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForInterplanetaryTransferEjection(o, UT, core.target.Orbit, true, out UT);
                break;

            case Operation.LAMBERT:
                dV = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(o, UT, core.target.Orbit, UT + interceptInterval);
                break;

            case Operation.KILL_RELVEL:
                dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(o, UT, core.target.Orbit);
                break;
            }

            vessel.PlaceManeuverNode(o, dV, UT);
        }
Пример #12
0
        void MakeNodeForOperation(Orbit o, double UT, Operation op, double newPeA, double newApA, double newInc, double courseCorrectFinalPeA, double moonReturnAltitude, double interceptInterval)
        {
            Vector3d dV = Vector3d.zero;

            double bodyRadius = o.referenceBody.Radius;

//            print(newPeA + " - " + this.newPeA + "\n" +
//                  newApA + " - " + this.newApA + "\n" +
//                  newInc + " - " + this.newInc + "\n" +
//                  courseCorrectFinalPeA + " - " + this.courseCorrectFinalPeA + "\n" +
//                  moonReturnAltitude + " - " + this.moonReturnAltitude + "\n" +
//                  interceptInterval + " - " + this.interceptInterval);

            switch (op)
            {
            case Operation.CIRCULARIZE:
                dV = OrbitalManeuverCalculator.DeltaVToCircularize(o, UT);
                break;

            case Operation.ELLIPTICIZE:
                dV = OrbitalManeuverCalculator.DeltaVToEllipticize(o, UT, newPeA + bodyRadius, newApA + bodyRadius);
                break;

            case Operation.PERIAPSIS:
                dV = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(o, UT, newPeA + bodyRadius);
                break;

            case Operation.APOAPSIS:
                dV = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(o, UT, newApA + bodyRadius);
                break;

            case Operation.INCLINATION:
                dV = OrbitalManeuverCalculator.DeltaVToChangeInclination(o, UT, newInc);
                break;

            case Operation.PLANE:
                if (timeReference == TimeReference.REL_ASCENDING)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(o, core.target.TargetOrbit, UT, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(o, core.target.TargetOrbit, UT, out UT);
                }
                break;

            case Operation.TRANSFER:
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(o, core.target.TargetOrbit, UT, out UT);
                break;

            case Operation.MOON_RETURN:
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForMoonReturnEjection(o, UT, o.referenceBody.referenceBody.Radius + moonReturnAltitude, out UT);
                break;

            case Operation.COURSE_CORRECTION:
                CelestialBody targetBody = core.target.Target as CelestialBody;
                if (targetBody != null)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeForCheapestCourseCorrection(o, UT, core.target.TargetOrbit, targetBody, targetBody.Radius + courseCorrectFinalPeA, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeForCheapestCourseCorrection(o, UT, core.target.TargetOrbit, interceptDistance, out UT);
                }
                break;

            case Operation.INTERPLANETARY_TRANSFER:
                dV = OrbitalManeuverCalculator.DeltaVAndTimeForInterplanetaryTransferEjection(o, UT, core.target.TargetOrbit, true, out UT);
                break;

            case Operation.LAMBERT:
                dV = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(o, UT, core.target.TargetOrbit, UT + interceptInterval);
                break;

            case Operation.KILL_RELVEL:
                dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(o, UT, core.target.TargetOrbit);
                break;

            case Operation.RESONANT_ORBIT:
                dV = OrbitalManeuverCalculator.DeltaVToResonantOrbit(o, UT, (double)resonanceNumerator.val / resonanceDenominator.val);
                break;

            case Operation.SEMI_MAJOR:
                dV = OrbitalManeuverCalculator.DeltaVForSemiMajorAxis(o, UT, newSMA);
                break;

            case Operation.LAN:
                dV = OrbitalManeuverCalculator.DeltaVToShiftLAN(o, UT, core.target.targetLongitude);
                break;
            }

            vessel.PlaceManeuverNode(o, dV, UT);
        }
Пример #13
0
        public override void Drive(FlightCtrlState s)
        {
            if (!core.target.NormalTargetExists)
            {
                users.Clear();
                return;
            }

            core.node.autowarp = core.target.Distance > 1000; //don't warp when close to target, because warping introduces small perturbations

            if (vessel.patchedConicSolver.maneuverNodes.Count > 0)
            {
                if (!core.node.enabled)
                {
                    core.node.ExecuteAllNodes(this);
                }
            }
            else if (core.target.Distance < 100 && core.target.RelativeVelocity.magnitude < 1)
            {
                //finished
                users.Clear();
                core.thrust.ThrustOff();
                status = "Successful rendezvous";
            }
            else if (core.target.Distance < 100)
            {
                double   UT = vesselState.time;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);
                vessel.PlaceManeuverNode(orbit, dV, UT);
                status = "Within 100m: matching velocities.";
            }
            else if (core.target.Distance < vesselState.radius / 50)
            {
                if (orbit.NextClosestApproachDistance(core.target.Orbit, vesselState.time) < 100 &&
                    orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time) < vesselState.time + 150)
                {
                    //We're close to the target, and on a course that will take us closer. Kill relvel at closest approach
                    double   UT = orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);
                    vessel.PlaceManeuverNode(orbit, dV, UT);

                    status = "Planning to match velocities at closest approach.";
                }
                else
                {
                    //We're not far from the target. Close the distance
                    double closingSpeed = core.target.Distance / 100;
                    if (closingSpeed > 100)
                    {
                        closingSpeed = 100;
                    }
                    double closingTime = core.target.Distance / closingSpeed;

                    double   UT          = vesselState.time + 15;
                    double   interceptUT = UT + closingTime;
                    Vector3d dV          = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.Orbit, interceptUT, 10);
                    vessel.PlaceManeuverNode(orbit, dV, UT);

                    status = "Close to target: plotting intercept over " + closingTime.ToString("F0") + "s";
                }
            }
            else if (orbit.NextClosestApproachDistance(core.target.Orbit, vesselState.time) < core.target.Orbit.semiMajorAxis / 50)
            {
                //We're not close to the target, but we're on an approximate intercept course.
                //Kill relative velocities at closest approach
                double   UT = orbit.NextClosestApproachTime(core.target.Orbit, vesselState.time);
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.Orbit);
                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "On intercept course. Planning to match velocities at closest approach.";
            }
            else if (orbit.RelativeInclination(core.target.Orbit) < 0.05 && orbit.eccentricity < 0.05 && orbit.SynodicPeriod(core.target.Orbit) < 5 * orbit.period)
            {
                //We're not on an intercept course, but we have a circular orbit in the right plane.
                //Also we are phasing quickly enough that it won't be too long until an intercept window
                //Plot a Hohmann transfer intercept.
                double   UT;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.Orbit, vesselState.time, out UT);
                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "Planning Hohmann transfer for intercept.";
            }
            else if (orbit.RelativeInclination(core.target.Orbit) < 0.05 && orbit.eccentricity < 0.05)
            {
                //We are in a circular orbit in the right plane, but we aren't phasing quickly enough. Move to a better phasing orbit
                double lowPhasingRadius  = core.target.Orbit.semiMajorAxis / 1.16;
                double highPhasingRadius = core.target.Orbit.semiMajorAxis * 1.16;

                bool useLowPhasingRadius = (lowPhasingRadius > mainBody.RealMaxAtmosphereAltitude() + 3000 && orbit.semiMajorAxis < core.target.orbit.semiMajorAxis);

                double phasingOrbitRadius = (useLowPhasingRadius ? lowPhasingRadius : highPhasingRadius);

                if (orbit.ApR < phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + 15;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else if (orbit.PeR > phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + 15;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else
                {
                    double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }

                status = "Increasing phasing rate by establishing new phasing orbit at " + MuUtils.ToSI(phasingOrbitRadius - mainBody.Radius, 0) + "m";
            }
            else if (orbit.RelativeInclination(core.target.Orbit) < 0.05)
            {
                //We're not on an intercept course. We're in the right plane, but our orbit isn't circular. Circularize.

                bool circularizeAtPe;
                if (orbit.eccentricity > 1)
                {
                    circularizeAtPe = true;
                }
                else
                {
                    circularizeAtPe = Math.Abs(orbit.PeR - core.target.Orbit.semiMajorAxis) < Math.Abs(orbit.ApR - core.target.Orbit.semiMajorAxis);
                }

                double UT;
                if (circularizeAtPe)
                {
                    UT = Math.Max(vesselState.time, orbit.NextPeriapsisTime(vesselState.time));
                }
                else
                {
                    UT = orbit.NextApoapsisTime(vesselState.time);
                }

                Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "Circularizing.";
            }
            else
            {
                //We're not on an intercept course, and we're not in the right plane. Match planes
                bool ascending;
                if (orbit.eccentricity < 1)
                {
                    if (orbit.TimeOfAscendingNode(core.target.Orbit, vesselState.time) < orbit.TimeOfDescendingNode(core.target.Orbit, vesselState.time))
                    {
                        ascending = true;
                    }
                    else
                    {
                        ascending = false;
                    }
                }
                else
                {
                    if (orbit.AscendingNodeExists(core.target.Orbit))
                    {
                        ascending = true;
                    }
                    else
                    {
                        ascending = false;
                    }
                }

                double   UT;
                Vector3d dV;
                if (ascending)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.Orbit, vesselState.time, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.Orbit, vesselState.time, out UT);
                }

                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = "Matching planes.";
            }
        }
        public override void Drive(FlightCtrlState s)
        {
            if (!core.target.NormalTargetExists)
            {
                users.Clear();
                return;
            }

            core.node.autowarp = core.node.autowarp && core.target.Distance > 1000;

            //If we get within the target distance and then next maneuver node is still
            //far in the future, delete it and we will create a new one to match velocities immediately.
            //This can often happen because the target vessel's orbit shifts slightly when it is unpacked.
            if (core.target.Distance < desiredDistance &&
                vessel.patchedConicSolver.maneuverNodes.Count > 0 &&
                vessel.patchedConicSolver.maneuverNodes[0].UT > vesselState.time + 1)
            {
                vessel.RemoveAllManeuverNodes();
            }

            if (vessel.patchedConicSolver.maneuverNodes.Count > 0)
            {
                //If we have plotted a maneuver, execute it.
                if (!core.node.enabled)
                {
                    core.node.ExecuteAllNodes(this);
                }
            }
            else if (core.target.Distance < desiredDistance * 1.05 + 2 &&
                     core.target.RelativeVelocity.magnitude < 1)
            {
                //finished
                users.Clear();
                core.thrust.ThrustOff();
                status = Localizer.Format("#MechJeb_RZauto_statu1");//"Successful rendezvous"
            }
            else if (core.target.Distance < desiredDistance * 1.05 + 2)
            {
                //We are within the target distance: match velocities
                double   UT = vesselState.time;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.TargetOrbit);
                vessel.PlaceManeuverNode(orbit, dV, UT);
                status = Localizer.Format("#MechJeb_RZauto_statu2", desiredDistance.ToString());//"Within " +  + "m: matching velocities."
            }
            else if (core.target.Distance < vesselState.radius / 25)
            {
                if (orbit.NextClosestApproachDistance(core.target.TargetOrbit, vesselState.time) < desiredDistance &&
                    orbit.NextClosestApproachTime(core.target.TargetOrbit, vesselState.time) < vesselState.time + 150)
                {
                    //We're close to the target, and on a course that will take us closer. Kill relvel at closest approach
                    double   UT = orbit.NextClosestApproachTime(core.target.TargetOrbit, vesselState.time);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.TargetOrbit);

                    //adjust burn time so as to come to rest at the desired distance from the target:
                    double approachDistance = orbit.Separation(core.target.TargetOrbit, UT);
                    double approachSpeed    = (orbit.SwappedOrbitalVelocityAtUT(UT) - core.target.TargetOrbit.SwappedOrbitalVelocityAtUT(UT)).magnitude;
                    if (approachDistance < desiredDistance)
                    {
                        UT -= Math.Sqrt(Math.Abs(desiredDistance * desiredDistance - approachDistance * approachDistance)) / approachSpeed;
                    }

                    //if coming in hot, stop early to avoid crashing:
                    if (approachSpeed > 10)
                    {
                        UT -= 1;
                    }

                    vessel.PlaceManeuverNode(orbit, dV, UT);

                    status = Localizer.Format("#MechJeb_RZauto_statu3");//"Planning to match velocities at closest approach."
                }
                else
                {
                    //We're not far from the target. Close the distance
                    double closingSpeed = core.target.Distance / 100;
                    if (closingSpeed > 100)
                    {
                        closingSpeed = 100;
                    }
                    double closingTime = core.target.Distance / closingSpeed;

                    double   UT = vesselState.time + 15;
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.TargetOrbit, closingTime);
                    vessel.PlaceManeuverNode(orbit, dV, UT);

                    status = Localizer.Format("#MechJeb_RZauto_statu4");//"Close to target: plotting intercept"
                }
            }
            else if (orbit.NextClosestApproachDistance(core.target.TargetOrbit, vesselState.time) < core.target.TargetOrbit.semiMajorAxis / 25)
            {
                //We're not close to the target, but we're on an approximate intercept course.
                //Kill relative velocities at closest approach
                double   UT = orbit.NextClosestApproachTime(core.target.TargetOrbit, vesselState.time);
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.TargetOrbit);

                //adjust burn time so as to come to rest at the desired distance from the target:
                double approachDistance = (orbit.SwappedAbsolutePositionAtUT(UT) - core.target.TargetOrbit.SwappedAbsolutePositionAtUT(UT)).magnitude;
                double approachSpeed    = (orbit.SwappedOrbitalVelocityAtUT(UT) - core.target.TargetOrbit.SwappedOrbitalVelocityAtUT(UT)).magnitude;
                if (approachDistance < desiredDistance)
                {
                    UT -= Math.Sqrt(Math.Abs(desiredDistance * desiredDistance - approachDistance * approachDistance)) / approachSpeed;
                }

                //if coming in hot, stop early to avoid crashing:
                if (approachSpeed > 10)
                {
                    UT -= 1;
                }

                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = Localizer.Format("#MechJeb_RZauto_statu5");//"On intercept course. Planning to match velocities at closest approach."
            }
            else if (orbit.RelativeInclination(core.target.TargetOrbit) < 0.05 && orbit.eccentricity < 0.05)
            {
                //We're not on an intercept course, but we have a circular orbit in the right plane.

                double   hohmannUT;
                Vector3d hohmannDV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.TargetOrbit, vesselState.time, out hohmannUT);

                double numPhasingOrbits = (hohmannUT - vesselState.time) / orbit.period;

                double actualMaxPhasingOrbits = Math.Max(maxPhasingOrbits, 5); // ignore input values that are unreasonably small

                if (numPhasingOrbits < actualMaxPhasingOrbits)
                {
                    //It won't be too long until the intercept window. Plot a Hohmann transfer intercept.
                    vessel.PlaceManeuverNode(orbit, hohmannDV, hohmannUT);

                    status = Localizer.Format("#MechJeb_RZauto_statu6", numPhasingOrbits.ToString("F2"));//"Planning Hohmann transfer for intercept after " +  + " phasing orbits."
                }
                else
                {
                    //We are in a circular orbit in the right plane, but we aren't phasing quickly enough. Move to a better phasing orbit
                    double axisRatio         = Math.Pow(1 + 1.25 / actualMaxPhasingOrbits, 2.0 / 3.0);
                    double lowPhasingRadius  = core.target.TargetOrbit.semiMajorAxis / axisRatio;
                    double highPhasingRadius = core.target.TargetOrbit.semiMajorAxis * axisRatio;

                    bool   useLowPhasingRadius = (lowPhasingRadius > mainBody.Radius + mainBody.RealMaxAtmosphereAltitude() + 3000) && (orbit.semiMajorAxis < core.target.TargetOrbit.semiMajorAxis);
                    double phasingOrbitRadius  = (useLowPhasingRadius ? lowPhasingRadius : highPhasingRadius);

                    if (orbit.ApR < phasingOrbitRadius)
                    {
                        double   UT1 = vesselState.time + 15;
                        Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                        vessel.PlaceManeuverNode(orbit, dV1, UT1);
                        Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                        double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                        Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                        vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                    }
                    else if (orbit.PeR > phasingOrbitRadius)
                    {
                        double   UT1 = vesselState.time + 15;
                        Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                        vessel.PlaceManeuverNode(orbit, dV1, UT1);
                        Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                        double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                        Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                        vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                    }
                    else
                    {
                        double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                        Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                        vessel.PlaceManeuverNode(orbit, dV, UT);
                    }

                    status = Localizer.Format("#MechJeb_RZauto_statu7", numPhasingOrbits.ToString("F1"), maxPhasingOrbits.text, MuUtils.ToSI(phasingOrbitRadius - mainBody.Radius, 0));//"Next intercept window would be <<1>> orbits away, which is more than the maximum of <<2>> phasing orbits. Increasing phasing rate by establishing new phasing orbit at <<3>>m
                }
            }
            else if (orbit.RelativeInclination(core.target.TargetOrbit) < 0.05)
            {
                //We're not on an intercept course. We're in the right plane, but our orbit isn't circular. Circularize.

                bool circularizeAtPe;
                if (orbit.eccentricity > 1)
                {
                    circularizeAtPe = true;
                }
                else
                {
                    circularizeAtPe = Math.Abs(orbit.PeR - core.target.TargetOrbit.semiMajorAxis) < Math.Abs(orbit.ApR - core.target.TargetOrbit.semiMajorAxis);
                }

                double UT;
                if (circularizeAtPe)
                {
                    UT = Math.Max(vesselState.time, orbit.NextPeriapsisTime(vesselState.time));
                }
                else
                {
                    UT = orbit.NextApoapsisTime(vesselState.time);
                }

                Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = Localizer.Format("#MechJeb_RZauto_statu8");//"Circularizing."
            }
            else
            {
                //We're not on an intercept course, and we're not in the right plane. Match planes
                bool ascending;
                if (orbit.eccentricity < 1)
                {
                    if (orbit.TimeOfAscendingNode(core.target.TargetOrbit, vesselState.time) < orbit.TimeOfDescendingNode(core.target.TargetOrbit, vesselState.time))
                    {
                        ascending = true;
                    }
                    else
                    {
                        ascending = false;
                    }
                }
                else
                {
                    if (orbit.AscendingNodeExists(core.target.TargetOrbit))
                    {
                        ascending = true;
                    }
                    else
                    {
                        ascending = false;
                    }
                }

                double   UT;
                Vector3d dV;
                if (ascending)
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                }

                vessel.PlaceManeuverNode(orbit, dV, UT);

                status = Localizer.Format("#MechJeb_RZauto_statu9");//"Matching planes."
            }
        }
        override public void activateAction()
        {
            base.activateAction();
            Vessel        vessel      = this.scriptModule.vessel;
            VesselState   vesselState = this.scriptModule.vesselState;
            Orbit         orbit       = this.scriptModule.orbit;
            CelestialBody mainBody    = this.scriptModule.mainBody;

            const double leadTime            = 30;
            double       closestApproachTime = orbit.NextClosestApproachTime(core.target.TargetOrbit, vesselState.time);

            if (actionType == 0)             //Align planes
            {
                double   UT;
                Vector3d dV;
                if (orbit.AscendingNodeExists(core.target.TargetOrbit))
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesAscending(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                }
                else
                {
                    dV = OrbitalManeuverCalculator.DeltaVAndTimeToMatchPlanesDescending(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                }
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(this.scriptModule.orbit, dV, UT);
            }
            else if (actionType == 1)             //Establish new orbit
            {
                double phasingOrbitRadius = phasingOrbitAltitude + mainBody.Radius;

                vessel.RemoveAllManeuverNodes();
                if (orbit.ApR < phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + leadTime;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangeApoapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextApoapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else if (orbit.PeR > phasingOrbitRadius)
                {
                    double   UT1 = vesselState.time + leadTime;
                    Vector3d dV1 = OrbitalManeuverCalculator.DeltaVToChangePeriapsis(orbit, UT1, phasingOrbitRadius);
                    vessel.PlaceManeuverNode(orbit, dV1, UT1);
                    Orbit    transferOrbit = vessel.patchedConicSolver.maneuverNodes[0].nextPatch;
                    double   UT2           = transferOrbit.NextPeriapsisTime(UT1);
                    Vector3d dV2           = OrbitalManeuverCalculator.DeltaVToCircularize(transferOrbit, UT2);
                    vessel.PlaceManeuverNode(transferOrbit, dV2, UT2);
                }
                else
                {
                    double   UT = orbit.NextTimeOfRadius(vesselState.time, phasingOrbitRadius);
                    Vector3d dV = OrbitalManeuverCalculator.DeltaVToCircularize(orbit, UT);
                    vessel.PlaceManeuverNode(orbit, dV, UT);
                }
            }
            else if (actionType == 2)             //Intercept with Hohmann transfer
            {
                double   UT;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(orbit, core.target.TargetOrbit, vesselState.time, out UT);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }
            else if (actionType == 3)             //Match velocities at closest approach
            {
                double   UT = closestApproachTime;
                Vector3d dV = OrbitalManeuverCalculator.DeltaVToMatchVelocities(orbit, UT, core.target.TargetOrbit);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }
            else if (actionType == 4)             //Get closer
            {
                double   UT          = vesselState.time;
                double   interceptUT = UT + 100;
                Vector3d dV          = OrbitalManeuverCalculator.DeltaVToInterceptAtTime(orbit, UT, core.target.TargetOrbit, interceptUT, 10);
                vessel.RemoveAllManeuverNodes();
                vessel.PlaceManeuverNode(orbit, dV, UT);
            }

            this.endAction();
        }
        protected override void WindowGUI(int windowID)
        {
            GUILayout.BeginVertical();

            GUILayout.Label("When guidance is enabled, the purple circle on the navball points along the ascent path.");
            ToggleAscentNavballGuidanceInfoItem();

            if (autopilot != null)
            {
                if (autopilot.enabled)
                {
                    if (GUILayout.Button("Disengage autopilot"))
                    {
                        autopilot.users.Remove(this);
                    }
                }
                else
                {
                    if (GUILayout.Button("Engage autopilot"))
                    {
                        autopilot.users.Add(this);
                    }
                }

                GuiUtils.SimpleTextBox("Orbit altitude", autopilot.desiredOrbitAltitude, "km");
                autopilot.desiredInclination = desiredInclination;

                GUIStyle si = new GUIStyle(GUI.skin.label);
                if (!autopilot.enabled && Math.Abs(desiredInclination) < Math.Abs(vesselState.latitude))
                {
                    si.onHover.textColor = si.onNormal.textColor = si.normal.textColor = XKCDColors.Orange;
                }
                GUILayout.BeginHorizontal();
                GUILayout.Label("Orbit inc.", si, GUILayout.ExpandWidth(true));
                desiredInclination.text = GUILayout.TextField(desiredInclination.text, GUILayout.ExpandWidth(true), GUILayout.Width(100));
                GUILayout.Label("º", GUILayout.ExpandWidth(false));
                if (GUILayout.Button("Current"))
                {
                    desiredInclination.val = vesselState.latitude;
                }
                GUILayout.EndHorizontal();

                core.thrust.LimitToPreventOverheatsInfoItem();
                //core.thrust.LimitToTerminalVelocityInfoItem();
                core.thrust.LimitToMaxDynamicPressureInfoItem();
                core.thrust.LimitAccelerationInfoItem();
                core.thrust.LimitThrottleInfoItem();
                core.thrust.LimiterMinThrottleInfoItem();
                core.thrust.LimitElectricInfoItem();
                GUILayout.BeginHorizontal();
                autopilot.forceRoll = GUILayout.Toggle(autopilot.forceRoll, "Force Roll");
                if (autopilot.forceRoll)
                {
                    GuiUtils.SimpleTextBox("climb", autopilot.verticalRoll, "º", 30f);
                    GuiUtils.SimpleTextBox("turn", autopilot.turnRoll, "º", 30f);
                }
                GUILayout.EndHorizontal();
                GUILayout.BeginHorizontal();
                GUIStyle s = new GUIStyle(GUI.skin.toggle);
                if (autopilot.limitingAoA)
                {
                    s.onHover.textColor = s.onNormal.textColor = Color.green;
                }
                autopilot.limitAoA    = GUILayout.Toggle(autopilot.limitAoA, "Limit AoA to", s, GUILayout.ExpandWidth(true));
                autopilot.maxAoA.text = GUILayout.TextField(autopilot.maxAoA.text, GUILayout.Width(30));
                GUILayout.Label("º (" + autopilot.currentMaxAoA.ToString("F1") + "°)", GUILayout.ExpandWidth(true));
                GUILayout.EndHorizontal();

                GUILayout.BeginHorizontal();
                GUILayout.Space(25);
                if (autopilot.limitAoA)
                {
                    GUIStyle sl = new GUIStyle(GUI.skin.label);
                    if (autopilot.limitingAoA && vesselState.dynamicPressure < autopilot.aoALimitFadeoutPressure)
                    {
                        sl.normal.textColor = sl.hover.textColor = Color.green;
                    }
                    GuiUtils.SimpleTextBox("Dynamic Pressure Fadeout", autopilot.aoALimitFadeoutPressure, "pa", 50, sl);
                }
                GUILayout.EndHorizontal();

                GUILayout.BeginHorizontal();
                autopilot.correctiveSteering = GUILayout.Toggle(autopilot.correctiveSteering, "Corrective steering", GUILayout.ExpandWidth(false));
                if (autopilot.correctiveSteering)
                {
                    GUILayout.Label("Gain", GUILayout.ExpandWidth(false));
                    autopilot.correctiveSteeringGain.text = GUILayout.TextField(autopilot.correctiveSteeringGain.text, GUILayout.Width(40));
                }
                GUILayout.EndHorizontal();

                autopilot.autostage = GUILayout.Toggle(autopilot.autostage, "Autostage");
                if (autopilot.autostage)
                {
                    core.staging.AutostageSettingsInfoItem();
                }

                autopilot.autodeploySolarPanels = GUILayout.Toggle(autopilot.autodeploySolarPanels,
                                                                   "Auto-deploy solar panels");

                autopilot.autoDeployAntennas = GUILayout.Toggle(autopilot.autoDeployAntennas,
                                                                "Auto-deploy antennas");

                GUILayout.BeginHorizontal();
                core.node.autowarp            = GUILayout.Toggle(core.node.autowarp, "Auto-warp");
                autopilot.skipCircularization = GUILayout.Toggle(autopilot.skipCircularization, "Skip Circularization");
                GUILayout.EndHorizontal();

                if (vessel.LandedOrSplashed)
                {
                    if (core.target.NormalTargetExists)
                    {
                        if (core.node.autowarp)
                        {
                            GUILayout.BeginHorizontal();
                            GUILayout.Label("Launch countdown:", GUILayout.ExpandWidth(true));
                            autopilot.warpCountDown.text = GUILayout.TextField(autopilot.warpCountDown.text,
                                                                               GUILayout.Width(60));
                            GUILayout.Label("s", GUILayout.ExpandWidth(false));
                            GUILayout.EndHorizontal();
                        }
                        if (!launchingToPlane && !launchingToRendezvous && !launchingToInterplanetary)
                        {
                            GUILayout.BeginHorizontal();
                            if (GUILayout.Button("Launch to rendezvous:", GUILayout.ExpandWidth(false)))
                            {
                                launchingToRendezvous = true;
                                autopilot.StartCountdown(vesselState.time +
                                                         LaunchTiming.TimeToPhaseAngle(autopilot.launchPhaseAngle,
                                                                                       mainBody, vesselState.longitude, core.target.TargetOrbit));
                            }
                            autopilot.launchPhaseAngle.text = GUILayout.TextField(autopilot.launchPhaseAngle.text,
                                                                                  GUILayout.Width(60));
                            GUILayout.Label("º", GUILayout.ExpandWidth(false));
                            GUILayout.EndHorizontal();

                            GUILayout.BeginHorizontal();
                            if (GUILayout.Button("Launch into plane of target", GUILayout.ExpandWidth(false)))
                            {
                                launchingToPlane = true;

                                autopilot.StartCountdown(vesselState.time +
                                                         LaunchTiming.TimeToPlane(autopilot.launchLANDifference,
                                                                                  mainBody, vesselState.latitude, vesselState.longitude,
                                                                                  core.target.TargetOrbit));
                            }
                            autopilot.launchLANDifference.text = GUILayout.TextField(
                                autopilot.launchLANDifference.text, GUILayout.Width(60));
                            GUILayout.Label("º", GUILayout.ExpandWidth(false));
                            GUILayout.EndHorizontal();

                            if (core.target.TargetOrbit.referenceBody == orbit.referenceBody.referenceBody)
                            {
                                if (GUILayout.Button("Launch at interplanetary window"))
                                {
                                    launchingToInterplanetary = true;
                                    //compute the desired launch date
                                    OrbitalManeuverCalculator.DeltaVAndTimeForHohmannTransfer(mainBody.orbit,
                                                                                              core.target.TargetOrbit, vesselState.time, out interplanetaryWindowUT);
                                    double desiredOrbitPeriod = 2 * Math.PI *
                                                                Math.Sqrt(
                                        Math.Pow(mainBody.Radius + autopilot.desiredOrbitAltitude, 3)
                                        / mainBody.gravParameter);
                                    //launch just before the window, but don't try to launch in the past
                                    interplanetaryWindowUT -= 3 * desiredOrbitPeriod;
                                    interplanetaryWindowUT  = Math.Max(vesselState.time + autopilot.warpCountDown,
                                                                       interplanetaryWindowUT);
                                    autopilot.StartCountdown(interplanetaryWindowUT);
                                }
                            }
                        }
                    }
                    else
                    {
                        launchingToInterplanetary = launchingToPlane = launchingToRendezvous = false;
                        GUILayout.Label("Select a target for a timed launch.");
                    }

                    if (launchingToInterplanetary || launchingToPlane || launchingToRendezvous)
                    {
                        string message = "";
                        if (launchingToInterplanetary)
                        {
                            message = "Launching at interplanetary window";
                        }
                        else if (launchingToPlane)
                        {
                            // FIXME: When plane matching azimuth autopilot is available, this clamping can be removed
                            desiredInclination  = MuUtils.Clamp(core.target.TargetOrbit.inclination, Math.Abs(vesselState.latitude), 180 - Math.Abs(vesselState.latitude));
                            desiredInclination *=
                                Math.Sign(Vector3d.Dot(core.target.TargetOrbit.SwappedOrbitNormal(),
                                                       Vector3d.Cross(vesselState.CoM - mainBody.position, mainBody.transform.up)));
                            message = "Launching to target plane";
                        }
                        else if (launchingToRendezvous)
                        {
                            message = "Launching to rendezvous";
                        }

                        if (autopilot.tMinus > 3 * vesselState.deltaT)
                        {
                            message += ": T-" + GuiUtils.TimeToDHMS(autopilot.tMinus, 1);
                        }

                        GUILayout.Label(message);

                        if (GUILayout.Button("Abort"))
                        {
                            launchingToInterplanetary =
                                launchingToPlane      = launchingToRendezvous = autopilot.timedLaunch = false;
                        }
                    }
                }

                if (autopilot.enabled)
                {
                    GUILayout.Label("Autopilot status: " + autopilot.status);
                }
            }

            if (!vessel.patchedConicsUnlocked())
            {
                GUILayout.Label("Warning: MechJeb is unable to circularize without an upgraded Tracking Station.");
            }

            int last_idx = ascentPathIdx;

            GUILayout.BeginHorizontal();
            ascentPathIdx = GuiUtils.ComboBox.Box(ascentPathIdx, ascentPathList, this);
            GUILayout.EndHorizontal();

            if (last_idx != ascentPathIdx)
            {
                bool last_enabled = editor.enabled;

                enable_path_module(ascentPathIdx);

                editor.enabled = last_enabled;
            }

            if (editor != null)
            {
                editor.enabled = GUILayout.Toggle(editor.enabled, "Edit ascent path");
            }

            GUILayout.EndVertical();

            base.WindowGUI(windowID);
        }